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ABSTRACT

Title of dissertation: LOW-COST PAPER-BASED ASSAYS FOR
MULTIPLEXED GENETIC ANALYSIS
USING SURFACE ENHANCED RAMAN
SPECTROSCOPY

Eric Peter Hoppmann, Doctor of Philosophy,
2013

Dissertation directed by: Professor Ian White
Department of Bioengineering

In order to improve human health it is critical to develop low-cost sensors

for chemical detection and healthcare applications. Low-cost chemical detectors

can enable pervasive monitoring to identify health threats. Rapid yet accessible

infectious disease diagnostics have the potential to improve patient quality of care,

reduce healthcare costs and speed recovery. In both cases, when multiple targets

can be detected with a single test (multiplexing), accessibility is improved through

lowered costs and simplicity of operation.

In this work we have investigated the practical considerations and applica-

tions of ink-jet printed paper surface enhanced Raman spectroscopy (SERS) devices.

SERS enables specific simultaneous detection of numerous analytes using a single

excitation source and detector. Sensitive detection is demonstrated in several real-

world applications. We use a low-cost portable spectrometer for detection, further

emphasizing the potential for on-site detection.
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These ink-jet printed devices are then used to develop a novel DNA detec-

tion assay, in which the multiplexing capabilities of SERS are combined with DNA

amplification through polymerase chain reaction (PCR). In this assay, the chro-

matographic properties of paper are leveraged to perform discrimination within the

substrate itself. As a test case, this assay is then used to perform duplex detec-

tion of the Methicillin-resistant Staphylococcus aureus (MRSA) genes mecA and

femB, two genes which confer antibiotic resistance on MRSA. Finally, we explore

statistical multiplexing methods to enable this assay to be applied to perform highly-

multiplexed detection gene targets (5+), and demonstrate the differentiation of these

samples using partial least-squares regression (PLS). By averaging the signal over

a region of the SERS substrate, substrate variability was mitigated allowing ef-

fective identification and differentiation, even for the complex spectra from highly

multiplexed samples which were impossible to visually analyze.
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Chapter 1

Introduction

1.1 Multiplex detection of biological targets

Rapid detection of infectious diseases is critical for improving patient quality

of care, reducing health care costs and speeding recovery. In the USA alone, doctors

report over 20 million cases of infectious-disease-related illnesses annually [6]. Cul-

tures are used for routine diagnosis, but are slow and provide limited information.

Molecular diagnostics (diagnostics which analyze biological markers, often DNA or

proteins) enable accurate and rapid detection, providing results in hours instead of

days [7]. Some tests which target very common biomarkers are low cost and easily

accessible (e.g. pregnancy tests), however these tests are the exception. In general

molecular diagnostics are expensive, requiring samples to be sent to central labs to

be analyzed by highly trained professionals.

The most general purpose and adaptable molecular diagnostic technique, poly-

merase chain reaction (PCR), works through the directed amplification of DNA

targets. However, the cost to run clinical PCR reactions is quite high (typically

$10’s to $100 per reaction [8]), and due to the nature of fluorescence (used for PCR

detection), each reaction is typically limited to screening for one or two targets. As

a result, despite the huge potential of PCR, even in wealthy first world countries it

is rarely used for routine screening.

1
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To improve the accessibility of molecular diagnostic tests, specifically PCR,

cost and complexity reductions are needed. Two key areas where these reductions

can be realized are in sample preparation and in the detection mechanism. When

fluorescence transduction is used to detect PCR target amplification, increasing

the number of targets being screened for results in a fairly linear increase in costs.

This is due to the fact that additional reactions are need for every few targets,

necessitating higher volume sample preparation and resulting in additional labor

and reagent costs. Additionally, in many clinical scenarios patient samples are of

limited volume, making it impossible to run more than one or a few reactions. If

an alternate transduction mechanism which enables detection of highly multiplex

samples could be used, the number of reactions could be substantially reduced,

lowering costs and improving testing accessibility.

1.2 SERS to enable highly multiplex detection in biological assays

Surface enhanced Raman spectroscopy (SERS) is an alternate detection mech-

anism which relies on the narrow-band nature of a molecule’s Raman signature.

Raman can be used to uniquely identify molecules, but is a fairly weak effect. By

leveraging the plasmonic enhancement of SERS, this effect can be boosted by many

orders of magnitude, giving sensitivity comparable to fluorescence [9, 10] coupled

with the ability to perform highly multiplex detection. However, a major drawback

of SERS is that the substrates needed to provide this enhancement have hitherto

been prohibitively expensive.

2
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Herein, we investigate practical considerations and applications of ink-jet printed

paper SERS devices, first reported by Yu, et al. [11]. We investigate the effect of

substrate support material on sensor performance, the relationship between volume

of nanoparticle ink deposited and performance, and demonstrate the application of

these sensors to several real-world applications. We then report the development

of a novel paper SERS device for analysis of PCR products. Leveraging the chro-

matographic properties of paper, the sample discimination occurs within the paper

SERS detection device itself. As a test case for this assay, we perform the duplex

detection of the Methicillin-resistant Staphylococcus aureus (MRSA) genes mecA

and femB, two genes which confer antibiotic resistance on MRSA. Finally, we in-

vestigate statistical methods to enable further increasing the degree of multiplexing

of the PCR-SERS assay. Despite the fact that the highly multiplexed samples were

impossible to analyze visually due to their complexity, we demonstrate the effective

differentiation of these samples using partial least-squares regression (PLS).

3
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Chapter 2

Raman, SERS and molecular diagnostics

Throughout this work, a key assumption is that surface enhanced Raman

spectroscopy (SERS) presents a worthwhile alternative detection mechanism to flu-

orescence. Thus, we begin with an overview of Raman scattering, SERS and SERS

substrates. As the chromatographic properties of paper play a key role in the assays

presented in Chapters 3 and 4, we then give a brief synopsis of plasmonic paper

(SERS on paper). Next, we present various molecular assays for biological analysis,

to give context for the assay presented herein, and then explore the application of

SERS to biological assays. Finally, a brief introduction to multiplexing and SERS

is given.

2.1 Raman and SERS

2.1.1 Raman

When photons interact with a molecule, the vast majority are instantaneously

absorbed and emitted with no change in energy. This is termed Rayleigh scattering.

Rarely, the photons are absorbed and then drop down to an excited vibrational

state: this is termed Stokes Raman scattering, and is depicted in Figure 2.1. The

excited vibrational state is a resonant mode of the underlying molecular structure.

The dependence of the Raman scattering on molecular structure is why a Raman
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spectrum is unique to a molecule, and is sometimes termed the molecule’s “molec-

ular fingerprint”. Even more rarely, a photon is already in one of its characteristic

vibrational energy states when it is excited by another incoming photon: in this case,

the emitted photon will be higher energy than the incident photon, and is termed

anti-Stokes Raman scattering. Due to the relative infrequency of this occurrence, it

is rarely used in measurements.

IR 
absorption

Rayleigh Stokes
Raman

Anti-Stokes
Raman

Resonant
Raman

Excited Electronic State

Virtual Energy States
(not discrete)

Excited Vibrational State

Ground State

Figure 2.1: Jablonski diagram depicting the processes of absorption
and scattering from a molecule. In the case of Raman scattering, the
molecule is excited to a virtual energy state (non-physical), and then

decays to an excited vibrational state, emitting a photon which
contains information about the underlying structure of the molecule.

Because the molecule is excited to a “virtual energy level” which has no phys-

ical meaning, any frequency of light can be used for Raman scattering. This is a

distinct advantage over techniques such as IR spectroscopy, and wavelengths ranging

all the way from the UV to the IR have been used. While shorter wavelengths pro-

vide much more intense Raman scattering (power ∝ ν4), the inherent fluorescence of

5
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a molecule can often overpower the Raman signature at shorter wavelengths due to

the fact that photons rarely undergo Stokes Raman scattering. Thus longer wave-

lengths at which little fluorescence occurs are preferred. As a result, experiments

using Raman are typically done in the mid-visible to IR range (IR having the least

fluorescence but the weakest Raman).

One of the key advantages of Raman is the very narrow-band nature of Raman

scattering. While fluorescence scattering is frequently spread out over 10’s of nm,

Raman scattering features are very narrow. As an example the fluorescence emis-

sion spectrum of Rhodamine 6G (R6G) is plotted alongside its Raman scattering

spectrum (785 nm excitation) in Figure 2.2.

Figure 2.2: Comparison of the broad-band fluorescence emission to the
narrow-band Raman scattering spectra of Rhodamine G6 (R6G).

Raman scattering spectrum scaled for clarity.
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The energy of a Raman scattered photon is given in Equation 2.1, in which the

incident photon is represented by the naught subscript and the emitted photon by

the one subscript. The term in parentheses is the Raman shift expressed in terms

of the wavenumber, and is often reported in units of cm−1. Importantly, ∆w is

only dependent on the difference in energy between the initial and final vibrational

states of the molecule and is completely independent of the virtual energy state

the molecule was excited to. This gives Raman the powerful property of being

independent of the excitation wavelength used for a particular measurement.

E = h∆ν

= hν◦ − hν1

= hc
( 1
λ◦
− 1
λ1

)

= hc∆w

(2.1)

While Raman has several profound advantages over other spectroscopic tech-

niques, it was initially confined to measurement of bulk (pure, concentrated) samples

due to the inefficiency of Raman scattering. However, enhancements of many orders

of magnitude were made possible with the discovery of SERS, and further enhance-

ments still with the discovery of Resonance SERS.

7
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2.1.2 SERS

On its own, Raman provides a spectral fingerprint which can be used to iden-

tify a molecule based on its unique structure. While this positions Raman as a

compelling analytical technique for bulk materials, it lacks the sensitivity required

for most applications. SERS enables the label-free chemical analysis of Raman to be

performed with similar detection performance to that of fluorescence spectroscopy [9]

and with far superior multiplexing density [4, 12].

Around forty years ago, it was discovered that noble metal nanostructures

boost the Raman signal by many orders of magnitude, for molecules at or near the

surface of the metal [13–16]. This enhancement is provided by both an electromag-

netic enhancement due to surface plasmon resonance (SPR) at the surface [17,18], as

well as a chemical effect [19]. Reports on increasingly sensitive SERS nanostructures

culminated with the demonstration of single molecule detection and identification

about 15 years ago [9, 10,19,20].

It is important to note that the SERS enhancement is heavily distance-dependent,

due to the rapid fall off of the SPR electric field. With the radius of a nanoparticle

given by a and a separation of d between the target analyte and the surface, the

SERS enhancement exhibits the following relationship [21]:

SERS Enhancement ∝
( 1
a+ d

)12

As a consequence, it is critical that molecules of interest are either very close to

or adsorbed to the nanostructured surface in order to generate a useful enhance-

8
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ment [21–23]. An example of the relative electromagnetic SERS enhancement as a

function of distance is given in Figure 2.3, with a few common biomolecules given

for size reference. For the sake of this example, we assume a spherical nanoparticle

with a 60 nm diameter (a = 30), matching the gold nanoparticles we use later. As

can be seen, the drop off in SERS enhancement is extremely rapid; when only 2 nm

from the surface over 50% of the enhancement has already been sacrificed!
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Hepatitis B: d ≈ 45 nm
Relative SERS: 0.00002

Figure 2.3: Size comparison of common biomolecules vs. the relative
electromagnetic SERS enhancement as a function of distance from the
surface of a spherical nanoparticle (assuming 60 nm diameter particles)
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2.1.3 Resonance SERS (SERRS) for increased sensitivity

While SERS is a highly sensitive technique in its own right, a further opti-

mization is possible through the use of surface enhanced resonance Raman scatter-

ing (SERRS). Resonance Raman occurs when a molecule is excited at a wavelength

which matches its optical absorption [24–27] (e.g. a fluorescent molecule’s excita-

tion wavelength). However, typically the resonance Raman effect is obscured by the

fluorescence emission of the molecule, which is orders of magnitude greater than the

Raman scattering (unless extremely sophisticated equipment is used which can sep-

arate the instantaneous Raman scattering from the slower fluorescence emission).

In spite of this, SERS can benefit greatly from the resonance effect since the fluo-

rescence emission is naturally quenched by the metal nanostructure providing the

SERS enhancement!

When the excitation wavelength is selected to match the optical absorption of

the molecule being detected the scattering cross-section is increased dramatically,

improving the detection by a few orders of magnitude [24, 25]. When detecting

arbitrary molecules this effect is of limited use, since there is little chance that the

molecule will happen to absorb at the excitation wavelength being used. However,

in the case of assays employing Raman reporter molecules, SERRS can be put to

good use by manually selecting labels which all have high absorption at the assay’s

excitation wavelength, enabling highly sensitive detection of biomolecules such as

DNA [28,29].
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2.1.4 SERS-active nanostructures and substrates

In order for metal nanostructures to generate a SERS enhancement, they must

have resonant features (dimensions on the order of the excitation wavelength) and

be composed of materials with appropriate dielectric properties and free surface

electrons. These appropriately sized resonant features enabled the coupling of the

energy of incident light into the oscillations of surface electrons, a phenomenon

termed localized surface plasmon resonance. SPR provides the bulk of the SERS

enhancement, with the remaining enhancement (one or two orders of magnitude, at

most) contributed by the chemical enhancement [22].

The most commonly used materials for SERS are gold and silver, as these

metals exhibit resonance in the visible range. While other metals such as copper,

nickel, platinum and aluminum can be pressed into service [30], they are typically

not used due to their lower absorbances and more damped resonance as compared

to gold and silver, though some have use in niche applications such as SERS at UV

wavelengths.

In addition to being highly resonant at the excitation wavelength used, the

structure of the material at the nanoscale is also important. While a resonant

nanosphere provides some SERS enhancement, a cluster of nanospheres provides a

dramatically increased enhancement near the junctions of these sphere, so called

‘hot spots’ [31,32]. Similar enhancements can be seen near the tips of sharp points,

motivating the development of structures such as nanostars and nano-pyrimids.

As an example of the enhancements generated at sharp corners and junctions, a

11
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comparison between the electric fields of a single rod and dimer of rods using finite

element methods is shown in Figure 2.4A, and an example of the hot spot between

two gold cylinders is shown in Figure 2.4B.

A                                          B

Figure 2.4: (A) Finite element method simlulation results of EEM (the
electromagnetic enhancment) generated by a single rod as compared to
a dimer of rods. (B) A similar result, except for two spheres. Adapted

with permission from McMahon et al. 2012 [2]. Copyright 2012
American Chemical Society.

In practice, SERS-active nanostructures are typically created either in col-

loidal solutions or through the use of nanofabricated planar substrates. In solution,

researchers either create colloids which intrinsically have appropriately sized dimen-

sions to couple with the incident light (e.g. nanorods [33] and nanostars [34]) or

through the spontaneous aggregation of nanospheres into resonant aggregates [32].

While effective, solution-based techniques require pipetting and (in the case of ag-

gregation) additional chemistry to be performed at the time of measurement, mak-

12



www.manaraa.com

ing them difficult to obtain consistent results from. In contrast, nanostructured

substrates provide a degree of repeatability and consistency by virtue of being pre-

fabricated. In order to use a nanostructured SERS substrate, it is common to

deposit a droplet of a liquid sample onto the surface of the substrate and allow it

to dry. As the sample dries, the analyte molecules within the sample adsorb onto

the nanostructured metal surface, where they will experience the plasmonic and

chemical enhancements of SERS.

SERS substrates have been fabricated using a variety of techniques. The initial

SERS substrates were formed (accidentally) by electrochemically roughening metal

electrodes [13–15], but with increased understanding of the SERS mechanism, fab-

rication techniques transitioned to more controllable techniques. The substrates

yielding the very highest SERS enhancement factors are created through nano-

lithography [35–37], which allows for complete control of the nanostructured surface.

Another technique yielding very large enhancements is thin film growth [33]. Unfor-

tunately, due to their nature these clean-room fabrication techniques are complex

and low-throughput, resulting in extremely expensive substrates.

One strategy to create SERS substrates using more modest resources is to

use self-assembly, in which chemical functionality is used to induce the self-directed

ordering of nanostructures [38–41]. Another similar class of fabrication is templated

assembly, in which a nanoparticles are deposited onto a (frequently sacrificial) tem-

plated substrate which guides their ordering [29, 42–44]. While these techniques

are often lower cost than nanolithogrpahy, they are still too expensive to be viable

chemical analysis tools outside of research labs.
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In order for SERS to become a viable solution for low-cost chemical and

biomolecule analytics, particularly for use in the field and at the point of sam-

ple, a significant shift in the methods for creating SERS substrates is necessary.

One promising method which has emerged in recent years is the use of paper as a

substrate support for creating low-cost SERS substrates.

2.1.5 Plasmonic paper for low-cost SERS substrates

In order to enable SERS to be used in a variety of everyday applications,

the cost of SERS substrates must be dramatically reduced. Current commercial

SERS substrates are produced through nanolithography, and cost tens to hundreds

of dollars. A shift in fabrication methods is needed to enable SERS to become

suitable for its many potential applications.

Recently, a number of promising reports have emerged which demonstrate

the fabrication of plasmonic devices using low-cost assembly methods (outside of

the clean-room) with paper or other simple membranes as the substrate supports.

Using paper as a substrate support offers a number of advantages over the rigid

supports required for most other methods. First, the fibers of the paper serve

as a low cost template onto which the substrate can be formed. Second, paper

is naturally hydrophillic and wicking, simplifying sample application and allowing

pump-free movement of liquids as well as chromatographic separations to occur.

Finally, the low-cost of paper is a distinct advantage over other substrate supports.

The very first reports of the use of plasmonic nanoparticles deposited onto
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paper as SERS substrates came from Vo-Dinh, et al [45, 46]. In this early work,

Teflon or polystyrene latex spheres were deposited uniformly onto filter paper, fol-

lowed by vacuum deposition of silver onto the spheres. These substrates were used

to detect various trace organic compounds. Following this, Berthod et al [47–49]

reported a different approach to fabricate paper SERS substrates. In their work,

silver nanoparitcles were grown in situ on the paper surface by soaking the paper in

silver nitrate solution and then reducing the silver ions with sodium borohydride.

More recently, research into plasmonic paper substrates has gained momentum

as a number of groups have explored fabricating SERS substrates on paper as a

viable alternative to nanofabricated and microfabricated substrates. Lee et al [50]

and Ngo et al [51] recently explored methods to fabricate plasmonic paper substrates

on paper through soaking, and Mehn et al [52] explored the controlled deposition

of nanostars through soaking. Looking at alternative deposition techniques, Qu

et al explored screen printing for SERS device fabrications [53], while Cheng et al

returned to the concept of in situ synthesis with a detailed study of the synthesis

parameters for plasmonic structures in paper [54]. These substrates achieve a range

of enhancement factors and intra-substrate variability, but the fabrication techniques

tend to be slow and difficult to scale.

Our group was the first to investigate inkjet printing as a simple and repro-

ducible technique for generating SERS active substrates [11]. In our approach,

nanoparticle inks are generated using the simple and scalable method of Lee and

Miesel [55] and then deposited onto untreated cellulose filter paper through inkjet

printing. In addition to being amenable to mass production, a high degree of relia-
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bility and consistency is achieved thanks to the fact that inkjet printing offers very

fine control of the rate and volume of ink deposition (typical SERS enhancement

variability 5-15% [5]). These substrates have reasonably high enhancement factors

around ≈ 2 × 105 [11, 56], which is similar to other substrates created through

semi-random assembly processes, but not as high as those created through nano-

lithography and templated assembly. As will be explored later, the small variability

which is present in these substrates can be mitigated by taking data at multiple

locations and averaging (as in Chapters 3 and 5) or by rastering the laser beam

over an area at collection time, to achieve this averaging effect in real time (as in

Chapter 4).

2.2 Molecular assays for analysis of infectious diseases

The ability to rapidly identify infectious diseases is critical to improving pa-

tient quality of care, reducing healthcare costs and speeding recovery. Traditional

methods rely on evaluation of the phenotypic characteristics of the target organism,

typically through culture, and often in combination with techniques such as an-

tibiotic susceptibility profiling to provide additional specificity [7]. However, these

techniques are slow, many times requiring days to conduct. Additionally, limited

strain differentiation is possible with these techniques.

Molecular diagnostics enable accurate and rapid detection of infectious dis-

eases. Most commonly molecular diagnostics use the detection of proteins or DNA

sequences to inform a diagnosis.
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2.2.1 Protein-based molecular assays

Proteins can be used for detection in a number of different ways, including

molecular weight based electrophoretic separation [57] and immunoassays. Elec-

trophoresis is relatively simple, but requires trained operators to conduct the assays

and interpret the results (which can vary based on an individual lab’s protocols) [58],

is slow, and is not sensitive to mutations (e.g. those which confer antibiotic resis-

tance).

Immunoassays such as an enzyme-linked immunosorbent assay (ELISA) are

well understood, flexible techniques and have some amplification capability since the

detection is transduced by the reaction of the captured antibody-enzyme conjugate

with the enzyme’s substrate resulting in a color change [59] or fluorescence. While

fairly powerful, ELISA and other immunoassays are labor intensive (multiple wash

and reaction steps) and can require large quantities of reactants.

2.2.2 Nucleic acid-based molecular assays

Nucleic acid-based testing offers excellent specificity, rapid results and is be-

coming increasingly accessible. With the continuing rapid advances in DNA technol-

ogy the full genomic sequences for most infectious diseases (and numerous strains)

are freely available, and are cost effective to obtain (under $0.10 per million bases

in 2013 [60]). As a result, new tests can be developed with relative ease compared

to other techniques. With sequence information, DNA probes can be selected, op-

timized and checked for non-specific hybridization in silico at very low cost.
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Without amplification, there exist techniques for evaluation of DNA, one of

the most prevalent of which is DNA profiling through the use of restriction enzymes.

In DNA profiling, restriction enzymes which cleave DNA at sites of certain patterns

of bases are added to a sample, and this is followed by a size-based electrophoretic

separation which can identify whether the sample matches a reference based on the

characteristic patterns obtained [61–63]. While useful, the requirement for large

quantities of DNA can be problematic: in many cases, especially for infectious

disease detection, large quantities of DNA are simply unavailable. Additionally,

these techniques share many of the drawbacks of the protein size-based techniques

discussed in Section 2.2.1.

2.2.3 Polymerase chain reaction

For highly specific and sensitive testing, signal amplification is required. Poly-

merase chain reaction (PCR), in which this amplification occurs through enzymat-

ically increasing the number of copies of target DNA, has emerged as the gold

standard nucleic acid detection technique [64]. In its simplest form, PCR works by

duplicating a short target DNA region (≈ 100 bases). Short segments of DNA which

bracket a region of interest (“primers”) are added to the reaction. After heating to

denature the target DNA, these primers bind to the target region as the reaction

cools, and are subsequently extended to create new copies of the target region by the

DNA polymerase (as shown in Figure 2.5). Following many cycles of amplification,

a size based separation is performed to identify the presence of amplified target [65].
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Genomic DNA
Target region in red

Denaturation
Heat to 95oC

Annealing
Cooling allows 
primers (small arrows)
+ polymerase (green
circles) to bind

Extension
DNA polymerase extends
primers by adding 
complimentary bases

Cycle 2 
Yields 22 = 4 copies

Cycle 3
Yields 23 = 8 copies

Figure 2.5: Polymerase Chain Reaction (PCR) DNA amplification
process. First, the reaction is heated to denature all of the double
stranded DNA. Then, as the reaction cools, the primers (short
segments bracketing a region of interest) will bind. These short
segments of DNA are extended by the polymerase, resulting in

duplication of the region of interest. The process is repeated, yielding
approximately 2n copies of the target region per cycle.
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While PCR was immediately recognized as a groundbreaking technique, it was

only after the development of quantitative real-time PCR (qPCR), in which a dye

is added that fluoresces when bound to double stranded DNA thus measuring the

increase in DNA during amplification, that PCR became a mainstream analytical

technique (Figure 2.6C) [66]. By enabling quantification and eliminating the need

to perform an electrophoretic separation following the reaction, labor requirements

were dramatically reduced along with a significant increase in assay speed.

The use of an intercalating dye was a great advance, but limits the multi-

plexing capability of the PCR reaction. To address this drawback (and to increase

specificity), two types of qPCR probes have gained popularity: TaqMan probes and

molecular beacons. Since these probes can be designed with different fluorophore

labels, it is possible to detect and differentiate signals from a few different probes

within a single reaction [67, 68]. TaqMan probes (aka hydrolyis probes), have both

a fluorophore and a quencher (Figure 2.6A). When the probes are in their native

state the fluorescence is quenched through resonance energy transfer. When the

target is present, the probe will bind within the primer-bracketed region and will

subsequently be hydrolyzed by the Taq DNA polymerase during extension, releasing

the fluorophore thus allowing it to fluoresce [69]. Molecular beacons operate in a

similar manner: in their native state they form a hairpin structure which causes

the fluorescence to be quenched (Figure 2.6B). However, they are not hydrolyzed

by the polymerase; instead, they are designed such that the distance between the

fluorophore and quencher is large enough that they will fluoresce when bound to the

target DNA sequence.
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Figure 2.6: (A) A qPCR assay using TaqMan probes. The probe has
both a fluorophore and a quencher, and thus emits no fluorescence.

However, this probe binds within the region bracketed by primers, and
is hydrolyzed during PCR amplification, releasing the fluorophore and

enabling detection. (B) A qPCR assay using a molecular beacon.
Unlike a TaqMan probe, it is not hydrolyzed during the reaction.

Instead, when no target is present it self-hybridizes into a hairpin form,
quenching the signal. When the target is present, it will preferentially
bind to that and fluoresce, enabling detection. (C) The simplest qPCR
assay. A dye is added which fluoresces when bound to double stranded
DNA. This allows for direct measurement of the increase in double

stranded DNA during fluorescence. While simple and inexpensive, this
technique can not be used for multiplex PCR as with A and B.

Adapted from Ginzinger et al. 2002, with permission from Elsevier [3].
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All of these techniques utilize fluorescence as the transduction mechanism

which limits them to one or a few targets per reaction. We present an alterna-

tive hydrolysis probe for use with SERS in Chapter 4 which enables much denser

multiplexing than fluorescence.

2.3 SERS for biological analysis

SERS is a highly sensitive technique capable of performing label-free detection

of small molecules, which exhibit easily identifiable and distinguishable spectral

bands. However, for macromolecules such as proteins and DNA the large number

of repeating subunits mean that the spectral bands of different macromolecules

within the same class are very similar and difficult to distinguish in a reliable and

repeatable manner, though some statistical techniques are able to provide limited

differentiation in optimal conditions [70]. In order to reliably detect macromolecules

it is much more common to employ SERS in labeled assays using Raman reporter

probes (RRPs), probes which are labeled with fluorophores or other strong Raman

scatterers.

SERS has been utilized in this manner to serve as the detection mechanism in

a number of different labeled biological assays, such as immunoassays [71–73] and

hybridization assays [29, 74–76]. SERS has also been used to create “SERS tags”,

in which a SERS active core with Raman reporters is encapsulated within an inert

shell which is biologically functionalized [34, 77, 78], enabling Raman to be used as

an alternative to fluorescence in biological labeling and imaging.

22



www.manaraa.com

For highly sensitive and specific detection of DNA targets, it is desirable to

perform amplification (as with traditional nucleic acid assays), with SERS providing

increased multiplexing capability versus fluorescence. There are a number of reports

of combining PCR with SERS [79, 80], however these assays tend to have various

drawbacks including negative signal response [81,82] and poor signal contrast [83].

2.4 Highly multiplex SERS assays

Thanks to the unique narrow-band spectral fingerprints of Raman, it is possible

to perofrm highly multiplex detection using only a single laser and filter set [4,84,85].

The first practical demonstration of this capability came from Cao et al., with

their demonstration of the use of SERS to specroscopically fingerprint DNA. Their

illustrative result is shown in Figure 2.7.

While one can intuit the suitability of SERS for densely multiplexed samples

by examining the spectra in Figure 2.7, implementing such multiplexing is somewhat

difficult in practice. When viewing one or two spectra simultaneously, one can visu-

ally identify the known spectrum or spectra. However, as the multiplexing density

exceeds 2 or 3 spectra, it becomes difficult to impossible to manually evaluate the

spectra. As a result, even though such highly multiplexed detection represents the

single greatest strength of SERS as compared to other signal transduction mecha-

nisms, there are very few reports on highly multiplexed SERS detection [85].

In order to evaluate complex multi-analyte SERS spectra, mathematical anal-

ysis techniques are required. Fortunately, this problem is not unique to SERS, and
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Figure 2.7: Representative Raman spectra from six dye-labeled
nanoparticle probes used for multiplexed detection of DANA
oligonucleotide targets. Reprinted from Cao et al. 2002, with

permission from AAAS [4].
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robust techniques have been developed in the field of Chemometrics. The use of

such techniques, and their application to SERS is examined in detail in Chapter 5.

2.5 Summary

The high sensitivity and narrow-band nature of SERS makes it an intriguing

detection mechanism for a number of different assays. While SERS has been held

back by extremely expensive microfabricated substrates or the requirement for the

end user to perform colloidal chemistry, low-cost plasmonic paper SERS substrates

offer intriguing possibilities. Molecular assays are one area that have the potential to

gain the most from SERS as an alternative to fluorescence. In the next chapter, we

examine the use of low-cost inkjet-printed SERS devices for analyte identification.

We present a duplex DNA detection assay utilizing these substrates in Chapter 4

and then explore the potential to scale this assay to high levels of multiplexing in

Chapter 5.
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Chapter 3

Highly sensitive and flexible inkjet printed SERS sensors on paper1

3.1 Introduction

Today there is significant interest in the development of portable and highly

sensitive chemical analysis techniques for use in the field at the point of sample

acquisition. Surface enhanced Raman spectroscopy (SERS) has been intensively

studied for applications in chemical detection. As discussed in detail in the intro-

duction, SERS offers sensitivity comparable to that of fluorescence spectroscopy [9]

while also providing highly specific information about the analyte. This is due to the

fact in Raman spectroscopy, photons from a laser source are inelastically scattered

at frequencies related to the vibrational energies within the analyte molecule, and

thus the measured spectrum uniquely identifies the analyte molecule (generating a

“molecular fingerprint”). Although Raman scattering alone is a weak effect, SERS

utilizes optical and chemical enhancements from gold or silver nanostructures to

provide a tremendous boost to the Raman signal [14–18,22].

Today, the most common method for performing SERS measurements is to

deposit a droplet of a liquid sample onto a rigid silicon or glass substrate that has

a nanostructured noble metal surface. When the sample dries, analyte molecules
1This chapter is adapted from: Eric P. Hoppmann, Wei W. Yu and Ian M. White, Highly sensi-

tive and flexible inkjet printed SERS sensors on paper, Methods 63, 219-224, 2013 with permission
from Elsevier.
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within the sample adsorb onto the nanostructured metal surface, where they will ex-

perience the plasmonic and chemical enhancement associated with SERS. The high-

est SERS enhancement factors are achieved through nanolithography approaches,

but are prohibitively expensive to produce. Growth and assembly approaches are

less expensive, but suffer from problems of low throughput and high inhomogeneity.

Recently, we reported the fabrication of SERS substrates by inkjet printing

silver nanostructures onto paper using a low-cost commercially available desktop

piezo-based inkjet printer [11]. These low-cost mass-producible SERS substrates on

cellulose paper demonstrate an enhancement factor of about 105 to 107, which is on

par with many of the self assembly and directed assembly techniques. In addition,

the paper SERS devices have a number of advantages over rigid SERS substrates.

First, liquid samples can be quickly loaded into the paper SERS device by capillary

forces (wicking) simply by dipping the paper into the sample. Second, powders and

residues, which are incredibly difficult to detect with rigid substrates or microfluidic

devices, can be loaded into the paper SERS device by swabbing the inherently

flexible device across a wide-area surface of any topology. Finally, analytes loaded

into the paper device through dipping or swabbing can be concentrated into a small

SERS sensing region by leveraging the concept of lateral flow paper fluidics. Thus,

when combining the low fabrication cost of inkjet printed SERS substrates with the

fluid handling properties and ease-of-use of paper-based analytics, this new paradigm

represents a significant advancement in on-site analytics, and enables SERS to be

much more accessible in terms of cost and usability.

Here, we build on the work of Yu et al. [11] as we investigate methods for
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fabricating paper-based SERS devices explore some potential applications in chem-

ical detection. We detail the methods for generating SERS-active substrates by

utilizing a commercial inkjet printer for fabrication, and show how the choice of

substrate support material choice and total amount of ink deposited can affect

the SERS enhancement. We present SERS spectra for a range of molecules on

these ink-jet printed substrates. Detection of the common model analyte 1,2-Di(4-

pyridyl)ethylene (BPE) is demonstrated at a concentration as low as 1.8 ppb. The

advantage of utilizing the lateral flow concentration capabilities of the paper de-

vice are then quantified. Finally, we demonstrate two high-impact applications of

the paper SERS devices. First, trace quantities of the fungicide malachite green in

water are detected when the sample is loaded simply by dipping the paper SERS

device into the water. Second, trace residues of the fungicide thiram are detected

by swabbing a surface with a paper SERS device. This collection of results provides

an in-depth view of this new low-cost and easy-to-use method for on-site analytical

chemistry, and serves as the foundation for the SERS substrate component of the

work presented in Chapter 4.

3.2 Materials and Methods

3.2.1 Inkjet printed SERS substrates

Chromatography paper (0.19mm thickness) was purchased from Fisher Sci-

entific. Nitrocellulose membranes were purchased from Bio-Rad Laboratories (Her-

cules, CA). Chloroauric acid was obtained from Alfa Aesar (Ward Hill, MA). Sodium
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citrate and glycerol were obtained from Sigma-Aldrich (St. Louis, MO). Common

commercial reagents were of analytical reagent grade.

The gold colloid is synthesized according to the method of Lee and Meisel [55].

Briefly, 80 mg of chloroauric acid is added to 400 mL of DI water (18.2 MΩ) and

brought to boil in an Erlenmeyer flask. While stirring rapidly, 80 mg of sodium

citrate is added. The color shifts rapidly to a deep purple. The solution is allowed

to boil for 20 minutes and then removed from heat.

The gold ink is formed by first centrifuging the gold colloid at 6,000g to concen-

trate the nanoparticles. After removing the supernatant the pellet of nanoparticles

is suspended in water to achieve a final concentration factor of 100X. Finally, the ink

is created by adding glycerol and ethanol to the concentrated nanoparticles, with a

final volume ratio of 5:4:1 of concentrated nanoparticles to glycerol to ethanol. In

separate work we have reported the use of silver nanoparticle ink as well [11,86].

For printing, the ink is injected into refillable printing cartridges. The open

source vector graphics editor, Inkscape, is used to define the SERS-active regions

for the printed substrates. An inexpensive consumer piezo-based inkjet printer, the

Epson Workforce 30, is used to print the SERS-active substrates onto untreated

chromatography paper, as previously described [11]. Substrates are printed at least

four times to increase the nanoparticle concentration in the paper. The flexibility

of ink-jet printing allows arrays of SERS-active regions to be printed in any shape.

In Figure 3.1A we show an array of triangular sensors printed for use in dipsticks.

After printing the array, devices are cut from the paper to the appropriate size.

Various paper SERS devices are displayed in Figure 3.1B-E.
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A

B           C          D        E

Figure 3.1: (A) A printed array of SERS substrates. Printed arrays of
SERS substrates can be cut as demanded by the application, with the
goal to create a conformation that most benefits analyte collection,

concentration, and detection. (B) Ink-jet printed gold nanoparticles for
use as a general SERS substrate. (C) Substrates for use in lateral flow
concentration experiments. (D) A substrate with a large wicking region

for use as a dipstick. (E) Substrates used as surface swabs.

30



www.manaraa.com

A scanning electron microscope (SEM) image of a typical ink-jet printed gold

substrate is presented in Figure 3.2, showing the clustering of gold nanoparticles in

the paper fiber pores. This clustering of nanoparticles is responsible for the high

SERS activity of the substrates. While the random aggregation of nanoparticles

seen in Figure 3.2 results in local variability of the SERS signal, the large num-

ber of nanoparticle clusters captured within the focused region of the fiber optic

probe (≈100 µm diameter spot) allows averaging over a multitude of nanoparticle

aggregates, lowering variability and enabling quantitative results.

3.2.2 Analyte preparation

1,2-Di(4-pyridyl)ethylene (BPE), malachite green oxalate, and thiram were

obtained from Sigma-Aldrich (St. Louis, MO). BPE, malachite green, and thiram

were dissolved in ethanol, water, and acetone, respectively; all samples were diluted

with water to various concentrations for use as test samples.

3.2.3 SERS measurements

SERS measurements were performed using a 785 nm laser (17 mW) for excita-

tion, a QE65000 (Ocean Optics) portable spectrometer for detection, and a fiber op-

tic probe (InPhotonics) for delivery of laser light and collection of scattered photons

(Figure 3.3). The 785 nm wavelength was chosen due to the low cost and portability

of 785 nm laser diodes, as well as the reduction in background fluorescence gained

by operating at long wavelengths. An integration time of one second was used for all

31



www.manaraa.com

A

B

Figure 3.2: (A) Scanning electron micrograph of a printed gold
nanoparticle region on cellulose paper. (B) Clustered gold

nanoparticles on the cellulose fiber (from box in (A))
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measurements; signals represent the average of three measurements. This averaging

step reduces the random background noise contributed by the detector; we found

that averaging across three signals was sufficient to reduce a large fraction of the

noise without contributing a significant amount of acquisition time. Using a linear

translation stage the fiber probe was focused to maximize signal intensity for each

sample before data acquisition.

For each measurement, the spectrometer records a spectrum in which the

Raman scattered photons are represented by spectral peaks; the collection of peaks

are used to identify the analyte. To quantify and analyze these results for sensing

purposes, the following steps are taken. The magnitude (in photon counts) of the

most prominent peak in the spectrum (e.g., 1207 cm−1 for BPE) is determined by

taking the difference between the value at the peak and the value at the nearest

local minimum. This spectral “peak height” is considered as the signal intensity.

To determine the detection limit for BPE, the signal intensity is plotted against

concentration and a linear fit of the 3 lowest concentration data points is performed;

the concentration at which this fit is equal to 3 standard deviations of the mean

intensity (1207 cm−1) of the blank samples is considered to be the detection limit.

In order to obtain reference spectra of the three analytes malachite green,

thiram, and BPE, 2 µL droplets of each were applied to 4×8 mm sections of printed

gold substrates (Figure 3.1B, total device size 4×15 mm). Substrates were then dried

in ambient conditions for 20 minutes and SERS measurements were taken as above.

Each substrate was interrogated at six or more locations uniformly spread across

the entire SERS active region; these spectra were averaged before plotting. SERS
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data from typical devices have relative standard deviations, |σ/µ|, that range from

15% at low analyte concentrations to 5% at high analyte concentration. Cellulose

paper and nitrocellulose membranes were both utilized to demonstrate the concept.

A                                                                                  BFiber optic
      cable

Paper strip

Fiber optic
         probe

785nm laser
diode

Portable
Spectrometer

Fiber optic
         probe

785nm laser
diode

Portable
Spectrometer

Figure 3.3: (A) Schematic of SERS detection using a small and
portable spectroscopic setup. A fiber optic probe is used for delivery of
laser light and collection of scattered photons, which are delivered to a

portable spectrometer. (B) Photograph of actual setup.

3.2.4 Lateral flow concentration

For the lateral flow concentration experiments, 30 µL of 10 ppb BPE was

applied uniformly to the entire 25×5 mm paper strip (Figure 3.1C); this volume

had been pre-determined to saturate the paper strip. After drying for 20 minutes

in ambient conditions, baseline SERS measurements were taken across the 4×5 mm

gold region at the top of the paper strip. The bare paper end (no gold) of the

dipstick was then dipped into methanol for 2 minutes, allowing the loaded sample

to concentrate in the gold region at the top of the paper strip. Methanol was selected

as the mobile phase for its high vapor pressure (faster concentration) and for the

high solubility of BPE in the solvent. After the paper strip dried, the SERS signal
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was measured.

3.2.5 Dipsticks

An isosceles triangle with a 4 mm high SERS active region at one tip was used

as a dipstick (Figure 3.1D, 28 mm base and two 20 mm sides). The gold-printed

region of the dipstick was dipped into a vial containing the sample of interest (in wa-

ter), allowing the dipsticks to soak up liquid for either 1 or 30 seconds. After drying,

the SERS signal was measured at 9 points forming a grid across the SERS-active

region and averaged. Averaging across a relatively large number of points is neces-

sary for two reasons: (i) SERS is infamous for signal variability when nanoparticle

aggregates are used, and (ii) the analyte molecules are not uniformly distributed

throughout the sensing region, a result of the location dependent rate of sample

collection and concentration. This averaging methodology enables a representa-

tive picture of analyte collection and concentration even with these high-variability

factors (0.33 coefficient of variation).

3.2.6 Swabs

For the swab experiments, strips of paper with 4×8 mm SERS-active regions

at one end were used (Figure 3.1E). The paper was folded 90 degrees where the gold

region ends, and the bare end (no gold) was used to hold the swab while wiping

the SERS-active region across the surface. The analyte (thiram in acetone) was

applied to a clean glass slide with an approximate surface density of 1.25 ng/mm2.
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After allowing the slide to dry, the entire swab was dipped in acetone and then

carefully wiped across the entire sample-containing region of the slide twice. After

drying, SERS measurements were taken across the entire SERS-active region (n=9

in 3×3 grid) and averaged to reduce variability due to uneven sample collection. A

background spectrum from an unused SERS substrate was recorded as a reference

and subtracted from the recorded data.

3.3 Results and Discussion

3.3.1 Identification of chemicals with paper SERS

To demonstrate that the SERS-active paper devices can be used for the spec-

troscopic identification of chemicals, sample droplets (2 µL) were deposited onto

the region of the cellulose strips onto which nanoparticles has already been printed.

Three model analytes were utilized: malachite green (1 ppm), thiram (240 ppm),

and BPE (180 ppb). The respective spectrum for each analyte is presented in Figure

3.4 (the upper black trace in each figure). The unique landscape of Raman peaks

within each spectrum can be used to identify each molecule.

Results are also shown for the same three model analytes deposited on nanoparticle-

functionalized nitrocellulose, rather than cellulose paper (the lower red traces in

Figure 3.4). The SERS-active nitrocellulose substrates yield strong Raman signals

for BPE and thiram; however, for malachite green, the signal is significantly lower as

compared to SERS-active cellulose paper. This collection of results indicates that

in general, inkjet-printed SERS-active nitrocellulose membranes can also be used
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Raman Shift (cm-1)

Figure 3.4: Representative spectra of target analytes. In each figure,
the top black trace is acquired using gold on cellulose substrates, while
the lower red trace is acquired with gold on nitrocellulose substrates.
(A) SERS signal from 2µL 1ppm malachite green. (B) SERS from 2µL

240ppm thiram. (C) SERS from 2µL 182ppb BPE.

37



www.manaraa.com

for chemical identification, but some molecules, such as malachite green, may have

strong interactions with the nitrocellulose that inhibit adsorption onto the metal

nanoparticles. Nevertheless, this demonstrates the viability of using alternate paper

types for ink-jet printed SERS substrates, which provides an excellent avenue for

additional assay optimization.

*

Figure 3.5: BPE SERS signal intensity vs. concentration. Signal
intensity is measured at 1207 cm−1. Data is fitted using the Langmuir
isotherm. Error bars represent the standard deviation of the 1207 cm−1

peak height, as measured at 6 locations distributed across the SERS
active region. Inset: recorded signal for 1.8 ppb BPE. Asterisk marks

the 1207 cm−1 peak.

To further quantify the performance of the paper-based SERS devices, SERS

measurements for BPE were repeated over a range of concentrations. The magni-

tude of the 1207 cm−1 Raman peak is plotted versus BPE concentration in Figure

3.5. The data points are fitted with a Langmuir isotherm with an R2 of 0.99, which

demonstrates the repeatability of our methodology. The Langmuir isotherm de-
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scribes the chemical equilibrium of the interaction between BPE and the substrate,

and is based on the assumption that there exist a fixed number of potential surface

binding sites. This result implies that these paper-based SERS sensors can perform

quantitative detection of chemicals. The detection of BPE is shown at the low con-

centration of 1.8 ppb (Figure 3.5, inset). The limit of detection was calculated to

be 1.1 ppb (12 femtomoles), which compares well with other substrates produced

through directed and self-assembly, though it is not as at the same level as some

reports that use sophisticated nanofabrication techniques [87–89].

Figure 3.6: SERS signal intensity for BPE at 1207cm−1 vs. number of
print cycles. Error bars represent the standard deviation of the

1207cm−1 peak height, as measured at 6 locations distributed across
the SERS active region.
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3.3.2 Effect of number of print cycles on performance

The amount of gold nanoparticle ink deposited on the cellulose substrate has

a direct effect on the detection sensitivity of the substrate, and is thus an important

parameter to optimize when fabricating paper-based SERS substrates. To assess the

impact of the number of print cycles, 2 µL droplets of 1 ppm BPE (11 pmol) were

applied to inkjet-printed substrates fabricated with varying numbers of print cycles.

As expected, the data in Figure 3.6 show a trend of increasing signal intensity with

increasing print cycles, which peaks at 12 print cycles. Beyond 12 cycles, however,

the measured signal begins to decline with additional print cycles. This biphasic

trend appears to imply that an increasing number of nanoparticle clusters initially

improves the signal, but after 12 cycles this effect is countered by interference due

to excess amounts of other components in the ink. Naturally, this optimal cycle

number will vary for different printers and different ink formulations.

3.3.3 Lateral flow concentration

The data in Figure 3.5 demonstrates that the paper-based SERS devices can be

used for the quantitative detection of trace levels of analyte in solution. Additionally,

as described above, paper-based SERS devices offer a unique advantage over rigid

SERS substrates; after loading a relatively large volume of liquid sample into the

paper device, the analyte molecules within the paper can be concentrated into a

small sensing region through lateral flow concentration. To illustrate the advantage

of the lateral flow concentration step, 30 µL of BPE in water (10 ppb) was uniformly
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loaded into a paper strip with a pipette; Au nanoparticles had been printed at one

end of the to define the sensing region. After drying the paper, the strip was dipped

into methanol such that the methanol wicked into the paper and carried the analyte

molecules up to the SERS-active tip of the lateral flow dipstick.

Raman Shift (cm-1)

Figure 3.7: Comparison of SERS intensity before and after lateral flow
concentration.

The BPE spectra before and after lateral flow concentration are presented

in Figure 3.7. The signal magnitude increases by nearly an order of magnitude

due to the concentration of BPE molecules into the sensing region upon dipping the

paper strip into the methanol mobile phase. Thus, while the inkjet-fabricated SERS

substrate was shown to be highly sensitive, the inherent concentration capabilities

of the paper can be leveraged to provide a significant improvement in the detection

limit.
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3.3.4 Application: detection of fungicide in water

Malachite green is a highly effective fungicide used in fish farms by the aqua-

culture industry. However, malachite green and its metabolite leucomalachite green

are suspected mutagens [90], and are stored in fish tissue for extended periods of

time [91]. As a result, malachite green is banned in many countries and thus its

use must be monitored. To analyze a water sample for malachite green with a rigid

SERS substrate, two approaches could be utilized: (i) a droplet (≈2 µL) could be

spotted onto the substrate and dried, or (ii) the substrate could be submerged and

soaked in the water sample such that target analytes may diffuse to the substrate

and possibly adsorb. In contrast, with paper-based SERS sensors, the paper strip is

simply dipped into the water sample, allowing the sample to be wicked into the sens-

ing region. This ease of use is particularly well suited for the detection of pesticides

and other toxins in environmental water samples at the point of sample collection.

To illustrate this application, a paper-based SERS device was dipped into

malachite green (1 ppb in water). In this case, the nanoparticle-printed region of

the paper strip is submerged into the sample, while the rest of the paper strip acts

as a reservoir to wick in the water; as the water is drawn into the paper strip,

malachite green molecules pass through the nanoparticle-printed area. The spectra

recorded after a 1-second dip and a 30-second dip are shown in Figure 3.8. Even

after only a 1-second dip, the spectral signature of 1 ppb malachite green is clearly

visible. As expected, by leaving the paper in the water sample for additional time,

malachite green is continually drawn into the SERS active region, which results in
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an increased signal magnitude. The rate at which the analyte is drawn into the

region - and thus the potential enhancement due to additional soaking time - will

depend on the size of the paper reservoir. We anticipate that the paper size and dip

time can be optimized based on the particular field use application and the required

detection performance.

Raman Shift (cm-1)

Figure 3.8: Comparison of signal intensity for 1 and 30 second dipsticks
(1ppb malachite green in water).

3.3.5 Application: detection of fungicide residue on a surface

Potentially the most significant advantage of paper SERS devices as compared

to rigid SERS substrates may be the capability to detect residues on surfaces. One

can intuit that a silicon or glass SERS device cannot be used reliably to collect trace

quantities of molecular residues directly from a surface, e.g., pesticide residue on a
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produce item. In contrast, flexible SERS substrates can be used to wipe surfaces

of complex topologies. In addition, the paper can be wet such that surface-bound

residues can be drawn into the paper.

To illustrate the use of paper SERS devices in this application, the fungicide

thiram was deposited in known quantities onto a glass surface and allowed to dry.

Then, a paper-based SERS substrate that had been wet with acetone was used to

swab the surface. The Raman spectra collected for 10 ng, 100 ng, and 300 ng of

thiram deposited onto the surface are shown in Figure 9. Even with only 10 ng

of fungicide present on the surface, the thiram Raman peak at 1384 cm−1 is easily

detectable. Thus, it is evident that paper-based SERS devices can be used to easily

detect trace chemical residues directly from surfaces. This capability is expected to

lead to a range of new critical applications for SERS detection in the field.

Raman Shift (cm-1)

Figure 3.9: SERS signal obtained by swabbing glass slides with various
amounts of thiram deposited on the respective surfaces.
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3.4 Conclusion

We have developed a new method for the fabrication of SERS substrates by

inkjet printing metal nanoparticles onto paper. These devices, which are highly

sensitive and yet low in cost to produce, are optimized for rapid and portable chem-

ical detection in the field. The sensitivity of the paper SERS devices is verified by

detecting BPE in concentrations as low as 1.8 ppb. In addition to low cost and

high sensitivity, the paper SERS devices feature unprecedented ease of use. Two

real-world applications are demonstrated to illustrate the ease of use for chemical

identification at the point of sample. First, the fungicide malachite green in water (1

ppb) is detected by simply dipping the paper SERS device into the sample, causing

the analyte to be wicked into the sensor. Second, residue of the fungicide thiram

is detected on a surface. A clear signal is observed even when only 10 ng of the

fungicide is present on the surface. Importantly, these results are achieved with a

low cost portable spectrometer, further emphasizing the application of the paper

SERS devices for portable on-site detection. We believe that in the near future this

new method of chemical identification has great potential to fill critical needs in

food safety, environmental protection, and security.

In the next chapter, we present a novel assay which combines these paper-

SERS sensors with PCR to enable highly multiplex detection of DNA targets within

a single reaction.
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Chapter 4

Multiplex detection of DNA targets using PCR and paper SERS

chromatography

4.1 Introduction

Rapid identification of infectious diseases is critical for improving patient qual-

ity of care, reducing healthcare costs and speeding recovery. Cultures are commonly

used, however they are slow and provide limited information. Molecular diagnostics

enable accurate and rapid detection [7], providing results in hours instead of days.

Detection is commonly performed using polymerase chain reaction (PCR), which re-

lies on the primer-directed exponential amplification of target DNA sequences [92].

It is well recognized that for an accurate diagnosis, the detection of multiple

genes is required, especially in the case of suspected drug resistance. In a sophisti-

cated and centralized clinical setting, this can be accomplished by running multiple

PCR reactions, each aiming to identify a respective gene to form a complete di-

agnosis. However, to move toward a point of care model, it may be necessary to

identify the presence of multiple genes in a single reaction due to limited resources

and limited sample volume.

In principle, multiple targets within a single reaction can be screened for us-

ing quantitative real-time polymerase chain reaction (qPCR) in combination with
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hydrolysis probes, utilizing the 5′ to 3′ exonuclease activity of the Taq DNA poly-

merase [69]. Hydrolysis probes (i.e. TaqMan R©probes) use identifying fluorophore

labels to indicate the amplification of multiple targets within a single reaction. These

hydrolysis probes rely on a 5′ fluorophore and a 3′ quencher; when the probe is

hydrolyzed during primer extension (indicating the presence of the target), the flu-

orophore is released and ceases to be quenched. While this technique is widely

used, fluorescence has broad excitation and emission wavelengths and requires sep-

arate filters for each fluorophore, typically limiting assays to one or two targets per

reaction.

In Chapter 3 we explored in depth paper-based substrates for surface enhanced

Raman spectroscopy (SERS), an alternative transduction mechanism that lever-

ages the highly specific and narrowband vibrational scattering features of Raman

spectroscopy along with the optical enhancement provided by localized plasmonic

resonances of metal nanostructures. Using a single excitation source and detector,

SERS provides easily identifiable spectral bands which are unique to each molecule

and serve as a molecular fingerprint for a target.

Here, we report an assay in which we combine the ink-jet printed paper SERS

substrates from Chapter 3 with PCR to enable highly multiplexed detection of DNA

targets. In addition, the chromatographic properties of paper are used to simplify

the discrimination of Raman labels. These paper SERS devices offer a low-cost

yet highly sensitive alternative to nano and micro-fabricated substrates, with the

additional benefit of enabling chromatographic separation within the substrate itself.

In this work, paper SERS devices are combined with PCR and single-labeled
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hydrolysis probes to perform multiplex DNA detection. As hydrolysis probe assays

are a mainstream tool and have been well characterized [3, 66], the large body of

existing work can be leveraged to improve the ease of adapting this assay to new

targets. In this assay, the probes have a 5′ Raman reporter and bind to a comple-

mentary target DNA sequence which is bracketed by primers (Figure 4.1A). During

extension of the target sequence, the Taq DNA polymerase will encounter this probe,

and due to the 5′ to 3′ exonuclease activity of the Taq poymerase it will degrade the

probe, releasing the Raman reporter.

P

P

A                                                  B                                       C                          D Hydrolysis PCR                                                  Sample Application                             Separation                         Detection

Printed Detection Region
Plain Paper

·If target sequence is present, the primers 
and Raman-labeled probes bind 
·Taq polymerase hydrolyzes bound probes 
during extension, releasing Raman reporters

·Following PCR, sample applied to 
lateral flow paper separation device
·The opposite tip is plasmonically 
functionalized by inkjet printing

·Released Raman reporters 
are carried to the detection 
region by the mobile phase; 
intact probes are not

·Raman reporters are 
detected by measuring 
the SERS signal with 
532 nm excitation

Polymerase: Primer:
P

Probe:

Figure 4.1: Depiction of the SERS-PCR assay for DNA detection using
Raman probes. (A) PCR is performed using single-labeled probes. If
the target is present, the probe will be hydrolyzed during extension,
releasing the Raman reporters. (B) The PCR reaction is applied to a

dipstick with a printed SERS-active region at the top. (C) A
separation is performed which allows the Raman reporters to migrate
to the top, while retaining the whole probes at the bottom. (D) A 532
nm laser and Raman spectrometer are used to read the SERS signal

from the top of the dipstick.

Following PCR, paper SERS devices double as separation matrices to enable

discrimination between whole and hydrolyzed probes (where hydrolyzed probes in-

dicate the presence of the target sequence in the sample). First, the PCR sample is
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applied to one end of a paper chromatograph, opposite from the end which has been

printed with a SERS-active region (Figure 4.1B). After allowing the device to dry, it

is dipped into a sample vial containing the mobile phase (60% ethanol) in which the

released Raman reporter is soluble, but the intact nucleic acid probe is not (Figure

4.1C). A simultaneous separation (within the sample vial) and concentration (above

the lid) then occurs, driven by the evaporation of the mobile phase from the top of

the dipstick. Thus, if the target sequence is present, the Raman reporter is released

during PCR amplification and subsequently carried up the dipstick where it can

be detected within the plasmonically-functionalized region at the top using SERS

(Figure 4.1D). If the target sequence is not present, the nucleic acid probe remains

intact and the attached Raman reporter cannot move up the dipstick: no Raman re-

porter will be detected when performing a SERS measurement. Importantly, due to

the narrow-band nature of Raman, multiple targets can be detected simultaneously,

offering a solution for multiplex DNA detection using a single excitation source and

detector.

To illustrate the PCR-SERS-dipstick assay’s multiplexing potential, we si-

multaneously detect two genes that convey drug resistance in Methicillin-resistant

Staphylococcus aureus (MRSA). MRSA is one of the top causes of difficult to treat

healthcare associated infections (HAIs) [93], resulting in close to 100,000 invasive

infections per year in the United States [94]. By detecting the presence of two genes,

mecA and femB, MRSA can be distinguished from other staphylococci with a high

degree of certainty [95,96], enabling appropriate treatment and improved prognosis.

While we chose MRSA as the illustrative application, there are scores of diagnostic

49



www.manaraa.com

tests which benefit from simultaneously screening for multiple targets. As the core

principles of this technique are consistent with conventional PCR assays, this assay

could be rapidly adapted to enable screening for any targets of interest using a single

reaction and a simple paper-based SERS detection.

4.2 Experimental

4.2.1 MRSA primer selection and optimization

Three sets of primers were obtained from Integrated DNA Technologies (IDT,

Coralville, IA) for each of the two MRSA genes: one published and two custom

primers (sequences in Table 4.1). Customer primers were selected using PrimerQuest

from IDT and the published sequence for MRSA strain TCH70 [97], and were de-

signed to all bracket the SERS probes (described later). Melting temperatures for

candidates proposed by PrimerQuest were calculated using MELTING [98] with the

Allawi 1997 nearest neighbor parameters [99] and the Owcarzy 2004 salt correc-

tions [100] to ensure selected primers had similar melting temperatures (and which

were about 5◦ C lower than the probes). All sequences were checked to ensure they

were not prone to hairpin and dimer formation using OligoAnalyzer from IDT.

To select optimum PCR annealing temperatures gradient PCR reactions were

conducted using a Bio-Rad MJ Mini Thermal Cycler. Gel electrophoresis was con-

ducted with 1% agarose gels and typical running conditions (5 V/cm for 45 minutes).

Gels were cast with SYBR Green I stain at approximately 0.3× concentration within

the gel, and were imaged using a UVP Biospectrum Chemi HR 410 imaging system.
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4.2.2 Polymerase chain reaction procedures

Custom DNA primers and probes (sequences in Table 4.2) were obtained from

Integrated DNA Technologies (IDT, Coralville, IA). Taq DNA polymerase with

ThermoPol R©buffer, pUC19, dNTPs and the restriction enzyme SspI were obtained

from New England Biolabs (NEB, Ipswich, MA). The pUC19 was linearized with

SspI according to the NEB protocol (with a 5 times excess of enzyme). Genomic

DNA from MRSA strain TCH70 was obtained from BEI Resources (Manassas, VA).

For pUC19 experiments, thermocycling was conducted using a 10 second melt step

at 95◦C, a 15 second annealing step at 68◦C and a 30 second extension step at

72◦C. Cycling was repeated a total of 30 times and was followed by a final extension

for 5 minutes at 72◦C. For MRSA experiments, thermocycling was conducted using

a 30 second melt step at 95◦C, a 15 second annealing step at 61.6◦C and a 15

second extension step at 68◦C. Cycling was repeated a total of 30 times. PCR

amplification was carried out in 1× ThermoPol R©buffer (20 mM Tris-HCl @ pH 8.8,

10 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, 0.1% Triton R©X-100) with 200 µM

dNTPs and 200 nM of primers and probes added. For the pUC19 reactions, 1010

copies of template DNA were used, while for the MRSA reactions 104 copies were

used. In all cases, correct PCR product was verified by melt curve analysis and gel

electrophoresis.

As the TCH70 strain of MRSA contains both the mecA and femB genes, a

slight modification to these procedures was made to allow for simulation of single

gene detection within a multiplex assay. In all experiments both MRSA probes
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Table 4.1: DNA sequences investigated for use as MRSA primers and probes

Name Oligonucleotide Sequence (5′ → 3′) Product

mecA Fwd. Pub [101] GTA GAA ATG ACT GAA CGT CCG ATA A
mecA Rev. Pub [101] CCA ATT CCA CAT TGT TTC GGT CTA A 479 bp
mecA Fwd. 1 CAA ACT ACG GTA ACA TTG ATC GC
mecA Rev. 1 GCT TTG GTC TTT CTG CAT TCC 116 bp
mecA Fwd. 2 TTG ATC GCA ACG TTC AAT TT
mecA Rev. 2 TCC TGG AAT AAT GAC GCT ATG 83 bp
femB Fwd. Pub [102] TTA CAG AGT TAA CTG TTA CC
femB Rev. Pub [102] ATA CAA ATC CAG CAC GCT CT 651 bp
femB Fwd. 1 TAC GCC CAT CCA TCG TAC TT
femB Rev. 1 CCA TTT GAA GGT CGC GAG AAA 120 bp
femB Fwd. 2 GCT CGA TGT ATC ATA CTC AGT TGT
femB Rev. 2 AGA TAT CGT GCC ATT TGA AGG T 109 bp

Table 4.2: DNA sequences used for use in SERS PCR assay

Name Oligonucleotide Sequence (5′ → 3′) Product 5′ label

pUC19 Fwd. GGA TTA GCA GAG CGA GGT ATG TAG
pUC19 Rev. GGT TTG TTT GCC GGA TCA AGA G 158 bp
pUC19 Probe TGG TAT CTG CGC TCT GCT GAA GCC AGT CR6G
mecA Fwd. CAA ACT ACG GTA ACA TTG ATC GC
mecA Rev. GCT TTG GTC TTT CTG CAT TCC 116 bp
mecA Probe AGA AGA TGG TAT GTG GAA GTT AGA TTG GGA CR6G
femB Fwd. GCT CGA TGT ATC ATA CTC AGT TGT
femB Rev. AGA TAT CGT GCC ATT TGA AGG T 109 bp
femB Probe AGC CAT GAT GCT CGT AAC CAT GTG A TAMRA
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were added to the reaction, however for the single gene experiments the primers

corresponding to one of the genes were omitted.

4.2.3 Fluorescence measurements

In order to validate and optimize this assay, a second pUC19 probe (same

sequence) was obtained with a 5′ TEX 615 label. Overlapping fluorescence images

were collected using an Olympus IX51 microscope and manually aligned. These

images were then analyzed using Image-J (National Institutes of Health) by aver-

aging the fluorescence laterally (across the width of the chromatography strips, left

to right in Figure 4.2A) to produce plots of fluorescence intensity as a function of

distance traveled vertically. Data is plotted in terms of the retardation factor RF ,

which is defined here as the ratio of distance traveled by the sample to the distance

traveled by the solvent (with the position of the maximum fluorescence of the ap-

plied sample defined as RF = 0 and the maximum extent of the solvent as RF =

1).

4.2.4 Paper selection for chromatographic separation

An initial survey of paper for chromatography was conducted, comparing the

separation performance offered by Fisher chromatography paper, VWR 1 µm filter

paper and Whatman grade 1 (13 µm), 2 (8 µm) and 41 (20-25 µm) papers. A

30 bp DNA probe from Integrated DNA Technologies (Coralville, IA) with a 5 ′

carboxy Rhodamine 6G (CR6G) label was used as the model analyte (5′ → 3′ AGC
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Figure 4.2: (A) Chromatography strips used for fluorescence validation
of the assay. (B) Dipstick used for fluorescence validation of dipstick

separation and concentration. (C) Dipstick with ink-jet printed
SERS-active region for SERS experiments.

GTG GCG CTT TCT CAA TGC TCA CGC TGT). A portion of this probe was

hydrolyzed at 10 µM concentration with DNase I (NEB, Ipswich, MA) according to

the NEB recommended protocol (one unit per µg of DNA, except reacting for 60

minutes instead of 10 minutes).

First, 1 µL of 10 µM DNA (either hydrolyzed using DNase or whole) was

pipetted a few mm from the bottom of the strips of paper. After allowing it to dry,

the strips were dipped into vials containing either 50% or 70% ethanol and allowed

to run for 15 minutes. After being removed and dried, the strips were imaged using

a 302 nm transilluminator and SYBR R©Gold filter on a UVP Biospectrum Chemi

HR 410 imaging system.

To compute the integrated intensity, a background subtraction was conducted

by subtracting the average intensity from an unused piece of paper from the chro-

matographs. Following the background subtraction, a simple numerical integration

was performed from RF = 0.3 to RF = 1.0.
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4.2.5 Chromatographic separation

To evaluate the chromatographic separation of the PCR samples, entire PCR

reactions (20 µL) were applied to the bottom of 8 × 58 mm chromatography strips

made from Whatman Grade 2 paper (as shown in Figure 4.2A), and allowed to dry.

The entire strip was suspended in a sealed jar such that the bottom 3 mm of the

strip was immersed in the mobile phase. The chromatography strip was allowed to

run for 15 minutes (solvent reaching approximately 43 mm) before being removed

and dried for fluorescence evaluation.

To compute the integrated intensity, first a background subtraction was con-

ducted for each sample by subtracting the average intensity of the upper end of the

chromatography strip (above RF = 1). Then a simple numerical integration was

performed from RF = 0.3 to RF = 1.0.

4.2.6 Silver nanoparticle ink synthesis

The silver colloid was synthesized using the simple reduction reaction method

of Lee and Meisel [55]. Silver nitrate, sodium citrate and dextran (average MW

150,000) were obtained from Sigma-Aldrich (St. Louis, MO). Briefly, 72 mg of

silver nitrate was added to 400 mL of DI water (18.2 MΩ) and brought to a rapid

boil in a 500 mL Erlenmeyer flask. While stirring quickly (such that the vortex

reaches the bottom of the flask), 80 mg of sodium citrate in 1 mL of water was

added. The color slowly changed to a green-brown color. After 10 minutes the

solution was removed and allowed to cool to room temperature.
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The silver ink was formed by first concentrating the silver colloid 100× through

centrifugation at 3,000g. Then 5 mg/mL dextran in water was added to the con-

centrated colloid at a 1:1 ratio.

4.2.7 SERS substrate printing

Printing was performed as previously described [56, 86]. After injecting the

ink into refillable ink cartridges from Alpha D Development Inc. (Lakeland, FL), a

consumer piezo-based ink-jet printer (Epson Workforce 30) was used to print onto

untreated filter paper (Whatman Grade 2). To increase the nanoparticle concentra-

tion in the substrate, the printing was repeated five times.

4.2.8 Dipstick separation and concentration

For fluorescence validation of the SERS devices, 8 × 27 mm dipsticks were

used (Figure 4.2B). The bottom 3 mm of the dipstick was dipped in 60% ethanol

in a vapor saturated vial while the top 3 mm of the dipstick was allowed to emerge

from the vial through a slit in the lid. This not only promotes a chromatographic

separation within the sample vial, but allows for an evaporation-driven concentration

of Raman reporters near the top of the paper strip, where the sensing region would

be located. Similar dipsticks, this time with printed silver regions at the top, were

used for the SERS experiments (Figure 4.2C).
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Figure 4.3: Representative spectra showing the effect of adding acid to
the dipstick SERS-active region before measurement.

4.2.9 SERS measurements and analysis

SERS measurements were performed using a 532 nm laser (0.6 mW) for exci-

tation. This wavelength overlaps with the optical absorption of the Raman labels

used in this report, enabling a resonance SERS enhancement. A Horiba Jobin Yvon

LabRam ARAMIS Raman microscope was used for detection. Measurements were

rastered over a 200 × 200 µm region by the system twice per integration period. An

integration time of one second with 5 averages was used for all measurements. Im-

mediately before measuring, 2 µL of 2.5% HCl was applied by pipette to the center

of the printed region to protonate the Raman reporter and promote interaction with

the nanoparticles (representative spectra shown in Figure 4.3). Using an automated

stage, measurements were taken in two rows of 3 equally spaced locations. The com-

bination of rastering, averaging and imaging multiple locations substantially reduces

the signal variability due to the uneven nature of chromatographic separation and
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concentration; for each of the 5 positive pUC19 dipsticks shown here, the relative

standard deviation, |σ/µ|, of the 1510 cm−1 peak height (one of the common peaks

used for identification) ranges from 15 to 29%. For quantification of the singleplex

data (using pUC19 as a model target), the magnitude (in photon counts per second)

of the 1510 cm−1 peak was computed by taking the difference between the magnitude

of the peak and the nearest local minimum. For display, each dipstick’s 6 spectra

were averaged together and a linear fit was subtracted (to reduce the contribution

of fluorescence). A 5 point FFT smoothing filter was applied before plotting.

4.3 Results and discussion

4.3.1 Experimental selection of chromatography paper

As this assay relies on the chromatographic discrimination capability of the

paper dipsticks to differentiate between whole probes (no target) and hydrolyzed

probes (target present in PCR reaction), the appropriate selection of a paper is an

essential consideration. There are two aspects of paper selection to consider. First,

the paper has to provide a good signal contrast between whole and hydrolyzed DNA

probes. Second, the paper has to be able to serve as a good matrix for an ink-jet

printed SERS substrates.

The first step in the selection process was to investigate the chromatographic

separation performance of various paper options available to us. To compare the

paper options, DNA samples (whole or hydrolyzed with DNase) were pipetted onto

paper strips a few mm from the bottom. After performing a 15 minute chromato-
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graphic separation, the strips were imaged and a background subtracted integrated

intensity was computed, running from just past the top of the applied sample lo-

cation to the top of the paper. Results are displayed in Figure 4.4. The goal is to

have the most contrast possible between the whole and hydrolyzed DNA probes.

As can readily be seen, Whatman grade 1 and 2 papers (70% ethanol in water as

running solution) as well as VWR 1 µm paper (50% ethanol in water) offered the

best contrast (indicated by red boxes).

Figure 4.4: Integrated intensity of background subtracted data,
demonstrating maximum contrast with VWR 1 µM and Whatman

grade 1 and grade 2 papers. W = whole DNA probe, D = hydrolyzed
(using DNase) DNA probe. Data shown for both 50% and 70% ethanol

in water.

Having identified the best paper selections for separating whole from hy-

drolyzed DNA, we then evaluated the SERS performance on each of these papers.
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The integrated intensity of the 1513 cm−1 peak is plotted in Figure 4.5. The VWR 1

µm paper displayed the poorest SERS performance. Due to the small pore size, an

over-aggregation of the metal nanoparticles was observed, giving a reduced SERS

signal as well as a high background signal from the silver nanoparticles. Both of

the Whatman papers gave reasonable SERS results, and Whatman grade 2 paper

was selected for further experiments due to its smaller pore size which is expected

to give better separation results based on the results seen in Figure 4.4.

µ µ µ

Figure 4.5: Comparison of SERS performance of ink-jet printed AgNPs
on papers demonstrating maximum chromatographic contrast between
whole and hydrolyzed DNA. Varying numbers of print cycles were
tested for each paper, and the number of cycles giving the largest

signal for 2 µL 10µM Rhodamine 6G (R6G) is displayed here as the
magnitude of the 1513 cm−1 peak. n = 3 for each sample.

4.3.2 MRSA PCR primer selection and duplex PCR verification

In order for the duplex assay to be successful, the primers used for amplification

must have similar melting temperatures and thus amplification efficiencies. If the
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primers are not well matched, one primer can dominate the reaction, and due to the

exponential nature of PCR amplification it will deplete the reagents and the other

target will not be detected. Three sets of primers were evaluated for each gene

target: one published and two custom primers. A gradient PCR was conducted

in which each primer set was subjected to four different annealing temperatures

(otherwise the PCR reaction was run as usual). PCR products resulting from this

gradient PCR were visualized using agarose gel electrophoresis, as seen in Figure

4.6.

mecAPub     mecA1       mecA2    femB Pub      femB1       femB2

58|61.6|63.6|67°C

Figure 4.6: Gel electrophoresis images showing results for PCR
amplification using primer sets for the MRSA genes mecA and femB.

Gradient PCR conducted with annealing temperatures at 58, 61.6, 63.6
and 67◦C. PCR protocol otherwise matches that reported in Section

4.2.2.

Of the primer sets evaluated, two were immediately disqualified based on the

gradient PCR result: the second custom mecA primer set as well as the published

femB primer set. As the product length of the published mecA primer set is quite

long, we narrowed our selection to the first custommecA primer set and both custom
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femB custom primer sets. PCR reactions were then conducted investigating duplex

PCR reactions with these primers which resulted in the first custom femB primer

set being eliminated due to dimer formation with the mecA set.

Having selected themecA1 and femB2 primer sets as the optimal primer sets to

be used in subsequent experiments, we then attempted to validate the duplex PCR

reaction. Real-time PCR was used since the products produced by these primers

are about the same length, making a size based separation like gel electrophoresis

ineffectual. In order to confirm that duplex PCR was happening as expected, PCR

reactions were conducted with either themecA1, femB2 or both primer sets (duplex).

Then, these reactions were used as the template for 1/20th of a second PCR reaction.

The real-time PCR results from this second reaction are displayed in Figure 4.7.

Figure 4.7: Real-time PCR verification of duplex PCR using mecA1
and femB2 primer sets (1× SYBR Green I added to PCR reactions to

allow visualization of amplification)
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As can be seen, when the second PCR reaction is conducted with the same

primers as the original reaction, amplification occurs almost instantly. The same

happens when the duplex reactions are used as template for PCR reactions with ei-

ther of the gene primer sets. However, when a PCR reaction for one gene is matched

with primers from the other gene, amplification happens very slowly, consistent with

a 1/20th dilution of the MRSA template in the first PCR reaction.

Further verification of the PCR reaction can be obtained by performing an

amplification with either mecA1, femB2 or both primer sets, and subsequently per-

forming a melting curve analysis. Figure 4.8 confirms the appropriate duplex am-

plification in two ways. First, the duplex PCR reaction amplifies about one full

cycle faster than the singleplex reactions, which is consistent with a reaction which

is beginning with twice as many segments of DNA which can be amplified. Second,

the melting curve analysis in Figure 4.8 shows unique melting temperatures for each

primer set, and a combination of both for the duplex reaction.

4.3.3 Experimental selection of the chromatography mobile phase

The PCR probes employed for this assay have a 5′ Raman reporter and a

3′ phosphate to prevent extension of the probe. As the primers are extended the

Taq polymerase will encounter and hydrolyze the probe (Figure 4.1). This results

in the Raman reporter being released from the probe along with a few residual

bases [69]. As a result of this less than perfect hydrolysis, the parameters of the

separation are critical. The percentage of ethanol (in water) used as the mobile
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A

B

Figure 4.8: (A) Representative real-time PCR amplification results
using mecA1 and femB2 primer sets (1× SYBR Green I added to PCR
reactions to allow visualization of amplification). Duplex amplification

becomes visible about 1 cycle sooner than the single gene
amplifications, implying that the duplex PCR is amplifying two

targets. (B) Representative melt curves for PCR amplification using
mecA1 and femB2 primer sets. Double peak in duplex results indicates

desired amplification of both targets simultaneously.
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phase was adjusted for optimal signal contrast between the negative and positive

PCR samples. Chromatography was performed comparing positive (pUC19 present

in reaction) and negative (no pUC19) PCR samples. To investigate the chromato-

graphic separation, fluorescence microscopy and bare (no nanoparticles) paper was

employed. Chromatographs for three different concentrations of ethanol were col-

lected and analyzed by conducting a background-subtracted integration as shown

in Figure 4.9 (raw chromatographs in Figure 4.10). As can be seen, both released

Raman reporters and intact probes were mobile in 50% ethanol. Both 60% and 70%

ethanol significantly reduce the signal for the negative samples, and it can be seen

that 60% ethanol offers the best contrast between the positive and negative samples.

Integrated Intensity (RF = 0.3 to 1.0)

Figure 4.9: Integrated intensity of background subtracted data,
demonstrating maximum contrast with 60% ethanol.

To further improve signal contrast between the positive and negative samples,

a simultaneous separation (below the vial lid) and concentration (above) is used, in
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50% -
60% -
70% -

50% +
60% +
70% +

Figure 4.10: Fluorescence intensity (averaged across the width of the
strips) demonstarting the chromatographic differentiation between
positive (red lines, target in reaction) and negative (black lines, no
target) as a function of ethanol concentration in the mobile phase.

which a continual evaporation-driven deposition of Raman reporters occurs above

the lid. The resulting chromatographs for three different dipstick running times

are shown in Figure 4.11. An essentially zero fluorescence is observed for the nega-

tive samples, while increasing fluorescence is observed with increasing time for the

positive samples, demonstrating the effectiveness of the combined separation and

concentration.

4.3.4 SERS detection of the PCR reaction

Having established the ability of a chromatography dipstick to both discrim-

inate and concentrate reporters, we then investigated the use of SERS to detect

Raman reporters from PCR samples. As in the chromatography experiments, the

full 20 µL post-PCR sample is applied to the bottom of the dipstick and allowed to

66



www.manaraa.com

RF

In
te

ns
ity

Figure 4.11: Fluorescence intensity (averaged across the width of the
strips) showing the fluorescence intensity vs distance for a number of

different running times (60% ethanol mobile phase)

dry. After running the dipstick for 20 minutes, acid is added to protonate the Raman

reporter and the SERS signal is immediately measured. Representative traces for

10 dipsticks using pUC19 as a model target (5 positives and 5 negatives) are shown

in Figure 4.12A. Three prominent peaks of CR6G which are commonly used for

identification and quantification are indicated with asterisks (1310, 1360 and 1510

cm−1). Averaging the spectra obtained at 6 different locations within the dipstick

enables us to obtain relatively consistent signal magnitudes for both the positive

and negative dipsticks, as shown in Figure 4.12B, allowing for clear and reliable

differentiation between positive and negative results.

67



www.manaraa.com

Positive PCR

Negative PCR

A

B
Raman Shift (cm-1)

15
10

 c
m

-1
 P

ea
k 

(c
ou

nt
s/

s)

Figure 4.12: Simultaneous separation and concentration is performed
using SERS dipsticks and PCR samples. (A) Representative SERS

spectra from 5 positive (reaction containing target) and 5 negative (no
target) dipsticks are shown (shifted vertically for clarity). Reprinted
from Hoppmann, et al., in press [5]. (B) Box plot of 1510 cm−1 peak

height for these 10 spectra.
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4.3.5 Multiplex detection of MRSA genes

To demonstrate the feasibility of this technique as a multiplex diagnostic tool,

we then applied this technique to the detection of the MRSA genes mecA and femB,

two genes responsible for MRSA’s antibiotic resistance. Four different scenarios

were investigated: samples containing 104 copies of MRSA (about 30 pg), samples

containing only mecA or femB (simulated by omitting a primer set), and samples

with no target DNA at all. Three PCR reactions followed by SERS dipsticks were

performed for each of these cases, for a total of 12 experiments. Representative

traces of each of these possibilities are shown in Figure 4.13A. The characteristic

peaks that were used for identification of the mecA Raman reporter CR6G and the

femB Raman reporter tetramethylrhodamine (TAMRA) are indicated with asterisks

and triangles, respectively. These spectra can be compared to reference spectra

of the two dyes deposited directly on printed silver (Figure 4.14). The ability to

consistently obtain results enabling clear identification of all targets present in a

sample is suggested by the three duplex results in Figure 4.13B. Control experiments

were conducted in which the PCR reactions were directly pipetted onto the silver

region of the dipsticks: for each case (negative, single gene, duplex) the spectra

obtained matched the duplex result (Figure 4.15) indicating that the discrimination

seen in Figure 4.13A is indeed due to the chromatographic properties of the paper

substrate.
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No Target PCR

mecA +

femB +

mecA + femB +

mecA + FemB +

A

B

Raman Shift (cm-1)

Raman Shift (cm-1)

Figure 4.13: (A) Representative SERS spectra of results obtained from
dipsticks with PCR reactions containing no target (but all probes and
primers), only one gene (simlated by adding both probes but only one
primer set) and both MRSA genes. (B) Three representative SERS

spectra from duplex PCR dipsticks.
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TAMRA
R6G

Raman Shift (cm-1)

Figure 4.14: Reference SERS spectra of the two Raman reporters used
on DNA probes. 2 µL of 10 µM pure dye in water was applied directly

to the printed region and measured (0.06 mW laser power).

No Target PCR

mecA +

femB +

mecA + femB +

Raman Shift (cm-1)

Figure 4.15: Control experiment showing SERS signals obtained by
directly pipetting PCR reactions containing no target, one gene and

both MRSA genes directly onto the printed SERS-active region (rather
than running a dipstick).
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4.4 Conclusion

A plethora of research results exist which demonstrate the power of SERS as

a highly multiplexible detection modality, however the current methodologies for

DNA detection require complex and expensive procedures. We have demonstrated

the feasibility of a simple paper-based SERS assay to clearly and consistently dis-

criminate between DNA targets in multiplex PCR reactions. By leveraging the

unique chromatographic properties of the paper SERS substrates for discrimina-

tion, we eliminate the need for the user to perform complex sample processing steps

that are usually required before SERS measurement. Fluorescence techniques have

similar sensitivity to SERS, however the broad-band nature of fluorescence severely

limits the number of simultaneous targets that can be detected in a fluorescence

assay, and multiplex detection of even a few targets results in rapidly increasing

equipment complexity. SERS offers highly multiplex detection using only a single

excitation source and detector, making it well suited to point of care applications

where it may be necessary to identify the presence of multiple genes in a single reac-

tion due to limited resources and sample volume. We envision that, in combination

with a low cost thermocycler and a commercially available handheld spectrometer,

this approach could contribute to the development of DNA diagnostic tests enabling

screening for a large number of targets within a single reaction.
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Chapter 5

Statistical analysis for highly multiplexed SERS

5.1 Introduction

As has been seen in Chapter 3 (chemical detection) and Chapter 4 (DNA de-

tection), surface enhanced Raman spectroscopy (SERS) presents an intriguing alter-

native to traditional detection modalities which is well suited for multiplex detection

of analytes. However, in spite of this significant promise, only a few groups have at-

tempted to experimentally demonstrate this potential [4,84,103], with most studies

only using 2 or 3 targets at any one time. The reason for this is simple: as the num-

ber of SERS targets is increased beyond around 2 or 3, visually differentiating and

analyzing the resulting spectra becomes impossible, even for a highly trained tech-

nician. Assays involving non-ideal targets (differing affinities for SERS substrates

and unequal Raman cross-sections) further compound the difficulty. Nevertheless,

in order for techniques such as the multiplex DNA assay presented in Chapter 4 to

reach their potential, these difficulties must be overcome.

The need to analyze convoluted and highly dimensional signals is not unique

to SERS: it is seen in numerous fields including chemistry and biology. Solutions to

problems of these types are broadly classified under the field of chemometrics, a field

which is focused on chemical data-analytics using multivariate statistics and other

mathematical/computational techniques. Due to the typical nature of such data
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(involving many interrelated variables and multiple components), extensions beyond

univariate analysis (e.g. ordinary least-squares regression (OLS)) were sought. Two

of the most frequently used multivariate analytic techniques are principal component

regression (PCR) [104] and partial least-squares regression (PLS) [105, 106]. While

alternate techniques such as ridge regression [107] and neural networks [108, 109]

exist, they are not investigated here as they lack the ability of techniques such as

PCR and PLS to reduce data dimensionality by selecting components which identify

the most variation in the data [110], a very useful property when dealing with highly

dimensional spectra. Differences are summarized in Table 5.1.

PCR2 is a linear method which transforms the matrix of x-data to a new

coordinate system defined by latent variables (components). These components

are designed to be uncorrelated with one another (orthogonal), with each element

accounting for the maximum variance in X possible [104]. OLS regression is then

performed on the transformed data. While PCR usefully reduces dimensionality,

by mathematical design it is only capable of identifying variability in X; while

it is frequently used as a tool to discriminate between groups, it has no inherant

capability for distinguishing groups [111].

PLS also transforms the data into a set of latent variables which are subse-

quently used for regression. The key difference between PLS and PCR is that while

PCR seeks latent variables which maximize variability in X, PLS seeks components

which maximize covariance between X and Y, providing accurate models of the

relationship between X and Y with fewer components than would be required with
2Not to be confused with polymerase chain reaction (PCR) from the preceding chapters.
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Table 5.1: Comparison of selected regression techniques, adapted from [1].

Method Highly Dimensional x Collinear x Vars. Components y Involved in Model of x

OLS N N N Y
PCR Y Y Y N
PLS Y Y Y Y
Ridge Y Y N Y
ANN Y Y N Y/N

PCR [111].

Here we investigate the application of PLS to the analysis of 5 SERS analytes,

ranging from 1× to 5× multiplexing. The application of asymmetric least-squares

baseline subtraction to SERS data is presented. Selection of an optimal number

of PLS components is discussed in the context of generating a good fit without

overfitting the data. Accuracy of the PLS model when tested using leave-one-out

cross-validation is presented. Sources of error and possible improvements are pre-

sented, with examples.

5.2 Experimental

5.2.1 SERS substrate preparation

SERS substrates were prepared similarly to those in Section 3.2.1, with a

few minor differences. The paper used was Whatman grade 1 filter paper. The

substrates were printed five times with the gold ink previously described, and were

cut as shown in Figure 3.1B.
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5.2.2 Sample preparation

5 test analytes were used for these multiplexing experiments: Rhodamine

6G (R6G), 1,2-Di(4-pyridyl)ethylene (BPE), Cresyl Violet acetate (CV), Methy-

lene Blue (MB) and Malachite Green oxalate (MG). BPE, CV, MB and MG were

obtained from Sigma Aldrich (St. Louis, MO) while R6G was purchased from Ex-

citon (Dayton, OH). Stock solutions were prepared at 10 mM in Methanol, then

diluted to 1 mM concentration in water. These 1 mM solutions were then used to

generate 1 mL samples at 10 µM concentration in water for SERS analysis.

31 different samples were generated in this manner to allow investigation of

all 31 possible combinations of analytes (five singleplex, ten duplex, ten 3-plex, five

4-plex and one 5-plex). For all of these samples, the concentration of each respective

analyte was 10 µM.

5.2.3 SERS measurements

SERS measurements were collected using a 785 nm laser (17 mW) for exci-

tation, a QE65000 (Ocean Optics) portable USB spectrometer for detection and

a fiber optic probe (Agiltron) for delivery of laser light and collection of scattered

photons. An integration time of one second was used for all measurements; signals

represent the average of five measurements. Averaging was used to reduce the ran-

dom background noise contributed by the detector. A linear translation stage was

used to position the fiber optic probe.

For each sample, an ink-jet printed SERS substrate was placed on a glass slide
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and 2 µL of sample was pipetted onto it. Spectra were collected from 5 different

locations for each substrate.

5.2.4 Data pre-processing

Pre-processing of data is desirable to maximize the effectiveness of chemo-

metric analysis. Care must be taken, however, as signal variability which contains

valuable information can easily be removed by preprocessing reducing the effective-

ness of the subsequent analysis. High-frequency noise (e.g. detector noise) which is

unrelated to the actual measurement should be removed (unnecessary in our data).

Low-frequency signal backgrounds should also be removed as these can reduce the

effectiveness of the analysis. Differentiation is one option, however for our data it

was found that this removed valuable information contained in the intermediate-

frequency signal. Instead, a baseline technique which follows the general shape of

the data, but allowing for intermediate-scale departure from the baseline was used:

an asymmetric least-squares (ALS) baseline estimation [112,113].

The ALS estimation is an iterative fitting process which is controlled by two

parameters. The asymmetry parameter p defines the weight given to points above

the fitted curve; small values of p (p � 1) cause the large peaks in the data to be

mostly ignored by the fitting algorithm, which is ideal for SERS spectra. The λ

parameter is a roughness penalty; smaller values of λ allow for tighter fitting to the

data, while larger values give a smoother result. A representative example of an

ALS fit of our data is shown in Figure 5.1. Values of λ = 104 and p = .001 were
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interactively selected to give a fit that follows the valleys in the spectra without

following too closely and removing valuable information (e.g. around 1400 cm−1 in

Figure 5.1). These parameters were used to perform a baseline subtraction of the

entire data set.
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Figure 5.1: Baseline subtraction used to pre-process data before
analysis. Raw data is in black, and the red line is the baseline to be

subtracted. Asymmetric least-squares baseline fitting with the
smoothing parameter λ = 104 and the asymmetry parameter p = .001

was used.

Representative background-subtracted spectra for the 5 singleplex samples as

well as the 5-plex multiplex sample are shown in Figure 5.2. Further examples of

places were over-fitting of the background could have been detrimental can be seen

from 1300-1400 cm−1 in the bottom black multiplexed trace, as well as around 1400

cm−1 in the top gray trace.
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Figure 5.2: Representative spectra singleplex analytes, as well as a
representative 5× multiplex result. From bottom to top: 5× multiplex
result (black), R6G (magenta), Methylene Blue (red), Cresyl Violet

(blue), BPE (green) and Malachite Green (gray). Shifted vertically for
clarity.

5.2.5 PLS data analysis

PLS regression was applied to enable multiplex data analysis beyond the point

where manual analysis can effectively differentiate the spectra of the analytes. This

analysis was conducted using leave-one-out cross-validation (LOOCV), in which a

single observation of the total data set (n = 5 × 31 = 155) is removed (leaving

154 observations), PLS regression is conducted, and then the PLS model is used

to predict the removed observation. This was repeated n times, offering a good

estimation of actual model predictive performance in aggregate (this assumption is

true as long as data points not replicated, e.g. two spectra collected back to back

from the same location on the same substrate).

Following generation of PLS models using LOOCV, the number of components
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to be used for further analysis is selected. To aid in this selection, plots of root mean

square error of prediction (RMSEP) vs. number of components are generated (again

using LOOCV), as seen in Figure 5.3. RMSEP is defined as
√

1
n

∑n
i=1(yi − ŷi)2, and

is a metric which indicates how well the true target concentration (yi) is predicted

(ŷi) using n components.
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Figure 5.3: RMSEP vs. the number of components in a PLS model of
the entire dataset (n = 155), using LOOCV. Dashed line indicates that

14 components were selected for use in further analysis.

The goal in selected how many components to use is to select enough com-

ponents to yield a good fit of the data (minimum RMSEP) without overfitting the

data. For this reason, it is better to select a local minimum rather than the absolute

80



www.manaraa.com

minimum. As additional components are added beyond an initial local minimum,

the danger is that the model is integrating variability which is unique to the train-

ing set to fit the data, and that these additional components will in fact decrease

performance on new data sets. As indicated by the dotted line in Figure 5.3, 14

components were chosen for use in further analysis as additional components be-

yond 14 offer little improvement (in fact, they make the prediction of the analyte

CV worse).

The raw value of the RMSEP can also serve as rough guidance as to the quality

of fit. As can be seen, the RMSEP values for CV and R6G never drop below ∼ 3

and ∼ 2.5, respectively, which will be reflected in the poor prediction quality of

these two analytes in the results.

In a PLS model the data X is modeled as the score matrix T times the loadings

P [114], and as a result additional insight into the characteristics of the RMSEP plot

(Figure 5.3) can be gleamed by visualizing these loadings. A plot of the loadings for

the first 4 components is contained in Figure 5.4. In Figure 5.3, one can see that

the first three components reduce the RMSEP of MG and BPE substantially, and

this is reflected by the fact that the loadings of the first three components in Figure

5.4 resemble combinations of the spectra of these two analytes.

All analysis was implemented in R [115], an open source language for statistical

computing, taking advantage of the pls package [116] for PLS regression and the

btw package for background subtraction [117].
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Figure 5.4: Plot of loadings of the first four components (from #4 in
magenta at bottom to #1 in middle in black). Pure spectra of the 5
analytes used in this analysis are show in the top half of the plot in

light gray. The loadings plot offeres a visualization of the
characteristics the PLS model.

5.3 Results

5.3.1 PLS analysis of highly multiplex SERS data

To demonstrate the potential for increasing the multiplexing capabilities of

a SERS detection system through multivariate statistical analysis, we conducted a

PLS analysis of 5 SERS analytes. Samples were analyzed which contained each of

the 31 possible combinations of analytes. This allowed for generation of a thorough

model which could account for some of the complex variability which arises in highly

multiplexed samples, in which the height of the peaks can no longer be directly

correlated to analyte concentration. The predicted concentrations of analytes (using

LOOCV and 14 PLS components) are displayed in Figure 5.5.

As seen in Figure 5.2, the highly multiplex data does not represent a linear
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Figure 5.5: PLS cross validated predictions 14 comps
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combination of the underlying spectra. This presents a formidable challenge in sep-

arating them out; nevertheless, the PLS model is able to account for a substantial

degree of this variability due to complex analyte interactions and generates reason-

able predictions of analyte concentration, significantly outperforming a naked eye

analysis. For strongly binding molecules with large Raman cross-sections, such as

BPE and MG, the model is able to offer fairly accurate predictions of actual con-

centration. However for weaker molecules such as R6G, the model has difficulty

distinguishing between presence and absence of the target.

In addition to the variability is caused by differing affinity for the metal surface

and different Raman cross-sections, there is also some variability due to the SERS

substrate itself as well as the varying degrees of wicking upon sample application

(different analytes have different affinities for the cellulose substrate support). The

first types of variability can be accounted for by the PLS model with no user input,

but in a labeled assay such as that presented in Chapter 4, this issue is further

mitigated as typical dyes used to label DNA all have similar affinities for the metal

nanoparticles and can be selected to have similar Raman cross sections. Addressing

the latter sources of variability requires changes to experimental design.

Treating this data as data from an on/off response, as seen in the labeled assay

in Chapter 4, we can define a threshold of 5µM and evaluate the occurrence of false

negatives and false positives, as shown in Figure 5.6. For an assay with an on/off

response, this assay would perform suitably for BPE, MB and MG, which some false

positives and negatives for R6G and CV.

To further investigate the causes of the erroneous predictions, we specifically
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Figure 5.6: Bar chart of false positives and negatives found in this
study (total n = 155), with a threshold of 5 µM used to partition

between “positive” and “negative”.

look at most erroneous false positive prediction for R6G (a prediction of 6.9 µM).

Figure 5.7 shows the spectrum for this false positive in red (the inset shows the

corresponding datapoint from the PLS LOOCV predictions for R6G). For reference,

the other 4 spectra from the same analyte mixture (BPE, CV and MG) are shown

in dotted lines, and the spectrum for pure R6G is shown in black at the bottom. By

viewing the data in the manner, it is easy to see that the model failed due to bad

data, rather than having failed in fitting. The data that generated the false positive

(red trace) can be seen diverging from the other 4 spectra from the same sample

(dotted lines) at a number of points, particularly around 450 cm−1 and 1400 cm−1.

85



www.manaraa.com

400 600 800 1000 1200 1400 1600 1800

0
20

00
40

00
60

00
80

00

Raman Shift (cm−1)

In
te

ns
ity

 (c
ou

nt
s/

s)
0 2 4 6 8 10

0
5

10
15

True Conc. (µM)

Pr
ed

. C
on

c.
 (µ

M
)

R6G

Figure 5.7: Plot of the spectrum corresponding to the most erroneous
false positive identified during leave-one-out cross validation of the PLS

model (in red). Inset shows a scatter plot of all predicted vs. true
concentrations for R6G. For reference, the 4 other spectra from the
same mixture of analytes are shown in dotted black lines and a pure

R6G spectrum is shown in black at the bottom. Intuitively, one can see
that poor data quality caused this bad prediction.

5.3.2 Spatial averaging to improve quality of PLS prediction

While the performance of the PLS model is reasonable under highly multi-

plexed conditions, it is insufficient for a diagnostic assay such as that presented in

Chapter 4. Two promising avenues of improvement exist. On the experimental de-

sign side, the inherent analyte variability can be addressed by choosing labels with

similar affinities for the substrate and similar Raman cross sections, and would sub-

stantially improve model quality. On the data collection side, significant improve-

ments can be realized by reducing the spatial variability seen in these substrates.

The simplest way to do this is by rastering over a moderately sized area (a few mm)

at detection time, a capability offered by many commercial spectroscopy systems.

In the absence of a rastering system, the same effect can be achieved by collecting
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spectra at a few locations and averaging them.

To investigate the potential improvements offered by optimizing data collec-

tion methodologies, we studied the effect of spatially averaging spectra. Since the

dataset consists of 5 spectra for each of the 31 different combinations of analytes,

we iteratively withheld the 5 spectra corresponding to one mixture of analytes and

generated a PLS model using the remaining 30 × 5 = 155 spectra, then used this

model to predict the concentration of the average of the 5 withheld spectra. By it-

erating over the 31 combinations of analytes this offered the opportunity to predict

the presence of 10 µM of each sample 16 times, and 0 µM 15 times.

The results of the PLS predictions of spatially averaged spectra are shown

in Figure 5.8. It is immediately apparent that the quality of the predictions have

improved dramatically. For all of the analytes, the predictions fall fairly tightly

around the true concentrations (indicated by the dashed lines), even in the case of

the challenging 5 way multiplexed spectrum which is impossible to visually evaluate

(black line, Figure 5.2). For an on/off diagnostic assay such as that seen in Chapter

4, this technique shows the potential to offer a consistently accurate diagnosis with

no false positives or negatives.

5.4 Conclusion

SERS is frequently touted as a detection mechanism enabling evaluation of

highly multiplex samples, however the vast majority of SERS publications present

results using only one or a few targets and take the ability to scale to highly mul-
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Figure 5.8: In this figure, the model was trained on a subset of data
leaving out the 5 data poitns corresponding to one possibility (e.g.
duplex of M.G. and C.V.). This model was then validated on the

average of the 5 withheld spectra. The process was iterated until this
had been performed for all 31 possible combinations of the 5 analytes.
The improvement in results is dramatic, and shows the promise of a
rastered measurement vs. the static measurements used in this study.
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tiplex samples on faith. We have demonstrated the feasibility of using statistical

multivariate techniques to enable evaluation of highly convoluted SERS spectra, ex-

tracting relatively accurate estimates of analyte concentration despite the fact that

these convoluted spectra are dramatically different from linear combination of the

underlying spectra. Through a simple but robust asymmetric least-squares baseline

subtraction, the unwanted variability due to the signal background is eliminated. We

demonstrate how to choose an appropriate number of components for a PLS model,

and then apply this to predict concentrations using leave-one-out cross-validation of

a data-set containing 155 samples. While this generates reasonable predictions of

analyte concentration, it does not offer perfect discrimination. We then demonstrate

that an improved prediction can be achieved by spatially averaging spectra before

analysis, yielding tight predictions of analyte concentration even for the most chal-

lenging 5× multiplex case. This study indicates that it is possible to use SERS as a

detection mechanism for highly multiplexed labeled assays and obtain an accurate

and reliable diagnosis.
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Chapter 6

Conclusion

6.1 Summary of findings

In this work we investigated the use and optimization of ink-jet printed surface

enhanced Raman spectroscopy (SERS) sensors for chemical and bio-molecule detec-

tion. Using cellulose as the SERS substrate support matrix offers unique capabilities,

including a pump-free microfluidic system which can perform chromatographic sep-

aration and concentration of analytes within the substrate itself. The capabilities

of the substrate to simultaneously separate and concentrate analytes were leveraged

to enable multiplexed detection of DNA targets from a PCR reaction. Multiplexing

considerations and potential were examined.

In Chapter 3, detection of a number of chemical analytes was performed in

a variety of assay formats. The analyte-dependent effect of the membrane support

material (unmodified cellulose versus nitrocellulose) on sensor performance was ex-

amined. We demonstrated the quantitative potential and excellent enhancement

factor of the printed SERS sensors using BPE as a model analyte. It was found that

the number of print cycles has a biphasic effect on SERS enhancement, initially

improving rapidly with increasing ink volume before reaching a peak and slowly

declining.

A number of application examples were given using the optimized substrates.
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To demonstrate the potential for quantitative chemical detection, we applied BPE in

bulk to the sensor and found a very tight fit to the Langmuir isotherm (R2 = 0.99).

To explore the potential for leveraging the paper-fluidic properties of the substrate

to enhance the signal, we applied BPE to the sensor in bulk and then performed a

lateral flow concentration, which boosted the signal by an order of magnitude. We

also demonstrated the detection of a fungicide in water using a dipstick, showing

a concentration effect with a longer dip. Finally, we used the SERS sensors as a

surface swab, showing excellent SERS detection of the fungicide Thiram on a surface

at the 10’s of nanograms level.

In Chapter 4 we introduced a novel DNA detection assay, in which the sensi-

tivity and multiplexing capabilities of SERS are combined with DNA amplification

through polymerase chain reaction (PCR). Previous efforts to combine SERS with

PCR have exhibited a variety of drawbacks, including low signal contrast, complex

sample processing steps and inverse signal responses. We demonstrated a new assay

in which Raman reporter probes (RRPs) on DNA are placed in a PCR reaction,

where they are hydrolyzed if the target is present. Then a simple dipstick separation

can be performed using an ink-jet printed SERS device; if the RRPs are hydrolyzed,

indicating target presence, they are soluble and will migrate to the detection zone,

while if no target was present the RRPs are insoluble and will not be detected.

We developed a duplex PCR assay as a test case, in which we targeted the

Methicillin-resistant Staphylococcus aureus (MRSA) genes mecA and femB, two

genes which confer antibiotic resistance on MRSA. After identifying optimal primer

and probe sequences and reaction conditions using traditional fluorescence-based
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PCR, we then used this assay to perform duplex detection of mecA and femB us-

ing SERS. The basic concepts of PCR are conserved in our new assay, making this

a drop-in replacement to enable highly multiplex detection of targets in existing

probe-based PCR assays.

In Chapter 5, we explored extending SERS assays which employ RRPs to high

levels of multiplexing. While the potential of SERS as a highly multiplexable detec-

tion modality is consistently taken for granted in the literature, it is almost never

addressed experimentally. As the potential of the assay in Chapter 4 is only realized

when performing highly multiplexed detection, we explored the multiplex detection

of mixtures containing combinations of 5 different Raman reporters. A naked eye

analysis of the highly multiplex data was found to be impossible since the spec-

tra do not represent the sort of linear combinations of the underlying constituents

which one might have expected. Using partial least-squares regression (PLS) we

demonstrate the differentiation of these samples with a high degree of accuracy,

and further improve this accuracy by spatially averaging the signals within a single

substrate. Using this improved method, the data could be thresholded at the level

of 50% signal yielding no false negatives or false positives.

6.2 Contributions to the field and potential impact

As the SERS field has developed over the past 40 years, researchers have

persistently sought to generate substrates enabling high degrees of enhancement in

a consistent and reliable manner. While there are numerous successes, in some cases
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enabling single-molecule detection, almost all of the substrates meeting these criteria

require clean-room fabrication or other highly complex processing regimes. We have

built on the work of Yu et al. [11, 118] in developing a paper SERS platform which

is suitable for reliable analysis. We reported the large enhancement (106 or more)

and low inter-substrate variability of these inexpensive substrates, the opportunity

to tune the support matrix depending on the analyte of interest and also reported

examples of numerous chemical detection applications.

Using these substrates, we developed a novel assay which combines the concept

of hydrolysis PCR probes with paper SERS devices. Leveraging the wicking and

chromatographic capabilities of the SERS substrates, we enabled discrimination and

SERS detection of multiple DNA targets within a single dipstick. By performing the

discrimination within the SERS device itself, the complex sample processing steps

required by other SERS DNA detection techniques were avoided.

Finally, we performed a detailed PLS chemometric analysis of 5-plex SERS

data, and investigated the practical concerns and performance of such an assay.

While the well known variability of SERS resulted in imperfect discrimination, we

found that by averaging over a larger area of the substrate this issue could be

mitigated, yielding very good predictive capability which would translate into no

false positives or negatives. This technique can be generally applied to SERS assays

and specifically to the SERS-PCR assay we developed to enable highly multiplex

screening for infectious diseases within a single sample and SERS device.
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6.3 Future work

In this work, we investigated the potential of the paper-SERS platform for

chemical and biological analysis. We believe that the SERS-PCR assay presented

here could serve as a foundation for a simple, highly multiplexed assay. However,

additional research is needed. We envision three main areas of further study: sample

collection and preparation, SERS-PCR assay format and amplification equipment.

The current implementation of the assay was performed using purified DNA as

the sample matrix. With real-world infectious disease samples, first the cells must

be lysed to free the DNA and then the DNA is purified. All of the commonly used

DNA purification schemes (e.g. phase separation, solid phase extraction) require

substantial manual labor and most require expensive equipment. A study of per-

forming PCR directly on raw lysate should be undertaken, to determine the effect

on reliability of the assay. While PCR is not commonly performed on raw lysate, it

is possible to do so with good results [119]. As an alternative, it may be possible to

develop a simple wound swab with integrated lysis enzymes, which could be used in

a dipstick fashion to purify DNA within the swab following sample collection.

Another area of future investigation is the format of the SERS-PCR assay

itself. Currently, samples are manually applied to the SERS dipsticks, before being

dried, run and measured. While this is suitable in a research lab setting, a more

robust assay design is needed for real-world use. Designing a cartridge system which

holds the SERS dipstick in place and aids in sample application would allow the

assay to be used with substantially less training.
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Finally, the amplification equipment used in this study is far too expensive to

be suitable for a low resource assay. We envision that this SERS-based assay, in

combination with a single-reaction low-cost thermocycler, could serve as the basis

for a simple on-site assay which screens for a panel of infectious diseases.
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